Journal of Infrared and Millimeter Waves, Volume. 42, Issue 5, 622(2023)

Research progress of cavity magnon-polariton systems

Chun-Ke WEI1, Jin-Wei RAO2、*, and Bi-Mu YAO1,2、**
Author Affiliations
  • 1State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China
  • show less
    References(87)

    [1] M N Baibich, J M Broto, A Fert et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters, 61, 2472(1988).

    [2] J Q Xiao, J S Jiang, C L Chien. Giant magnetoresistance in nonmultilayer magnetic systems. Physical Review Letters, 68, 3749(1992).

    [3] Z H Xiong, D Wu, Z Valy Vardeny et al. Giant magnetoresistance in organic spin-valves. Nature, 427, 821-824(2004).

    [4] A E Berkowitz, J R Mitchell, M J Carey et al. Giant magnetoresistance in heterogeneous Cu-Co alloys. Physical Review Letters, 68, 3745(1992).

    [5] Y S Gui, N Mecking, X Zhou et al. Realization of a room-temperature spin dynamo: the spin rectification effect. Physical review letters, 98, 107602(2007).

    [6] M Harder, Y Gui, C M Hu. Electrical detection of magnetization dynamics via spin rectification effects. Physics Reports, 661, 1-59(2016).

    [7] O Mosendz, J E Pearson, F Y Fradin et al. Quantifying spin Hall angles from spin pumping: Experiments and theory. Physical review letters, 104, 046601(2010).

    [8] J C Rojas-Sánchez, N Reyren, P Laczkowski et al. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces. Physical review letters, 112, 106602(2014).

    [9] J E Hirsch. Spin hall effect. Physical review letters, 83, 1834(1999).

    [10] B A Bernevig, S C Zhang. Quantum spin Hall effect. Physical review letters, 96, 106802(2006).

    [11] T Kimura, Y Otani, T Sato et al. Room-temperature reversible spin Hall effect. Physical review letters, 98, 156601(2007).

    [12] C Zhou, L Shen, M Liu et al. Long‐Range Nonvolatile Electric Field Effect in Epitaxial Fe/Pb (Mg1/3Nb2/3) 0.7 Ti0. 3O3 Heterostructures. Advanced Functional Materials, 28, 1707027(2018).

    [13] C Zhou, L Shen, M Liu et al. Strong nonvolatile magnon-driven magnetoelectric coupling in single-crystal Co/[PbMg 1/3 Nb 2/3 O 3] 0.71 [PbTiO 3] 0.29 heterostructures. Physical Review Applied, 9, 014006(2018).

    [14] Q Zhang, Y Sun, Z Lu et al. Zero-field magnon–photon coupling in antiferromagnet CrCl3. Applied Physics Letters, 119(2021).

    [15] Y Tabuchi, S Ishino, A Noguchi et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 349, 405-408(2015).

    [16] Z Wang, H Y Yuan, Y Cao et al. Magnonic frequency comb through nonlinear magnon-skyrmion scattering. Physical Review Letters, 127, 037202(2021).

    [17] G E Moore. Gramming more components onto integrated circuits. Electronics, 38, 8(1965).

    [18] A Steane. Quantum computing. Reports on Progress in Physics, 61, 117(1998).

    [19] J Gruska. Quantum computing(1999).

    [20] M A Nielsen, I L Chuang. Quantum computation and quantum information(2010).

    [21] C H Bennett, D P DiVincenzo. Quantum information and computation. nature, 404, 247-255(2000).

    [22] R P Feynman. Keynote talk, First Conference on Physics and Computation, MIT, 1981. International Journal of Theoretical Physics, 21, 467(1982).

    [23] A Aspuru-Guzik, A D Dutoi, P J Love et al. Simulated quantum computation of molecular energies. Science, 309, 1704-1707(2005).

    [24] J I Cirac, P Zoller. Goals and opportunities in quantum simulation. Nature physics, 8, 264-266(2012).

    [25] C L Degen, F Reinhard, P Cappellaro. Quantum sensing. Reviews of modern physics, 89, 035002(2017).

    [26] L M Duan, M D Lukin, J I Cirac et al. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413-418(2001).

    [27] H J Kimble. The quantum internet. Nature, 453, 1023-1030(2008).

    [28] G Kurizki, P Bertet, Y Kubo et al. Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences, 112, 3866-3873(2015).

    [29] A A Clerk, K W Lehnert, P Bertet et al. Hybrid quantum systems with circuit quantum electrodynamics. Nature Physics, 16, 257-267(2020).

    [30] D Lachance-Quirion, Y Tabuchi, A Gloppe et al. Hybrid quantum systems based on magnonics. Applied Physics Express, 12, 070101(2019).

    [31] A F Van Loo, A Fedorov, K Lalumiere et al. Photon-mediated interactions between distant artificial atoms. Science, 342, 1494-1496(2013).

    [32] A Kurs, A Karalis, R Moffatt et al. Wireless power transfer via strongly coupled magnetic resonances. science, 317, 83-86(2007).

    [33] T M Karg, B Gouraud, C T Ngai et al. Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart. Science, 369, 174-179(2020).

    [34] H Zhong, Y Wen, Y Zhao et al. Ten states of nonvolatile memory through engineering ferromagnetic remanent magnetization. Advanced Functional Materials, 29, 1806460(2019).

    [35] N Nanotechnology. Memory with a spin. Nature Nanotechnology, 10, 185(2015).

    [36] B Julsgaard, C Grezes, P Bertet et al. Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble. Physical review letters, 110, 250503(2013).

    [37] K Hennessy, A Badolato, M Winger et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445, 896-899(2007).

    [38] T Gaebel, M Domhan, I Popa et al. Room-temperature coherent coupling of single spins in diamond. Nature Physics, 2, 408-413(2006).

    [39] J D Teufel, D Li, M S Allman et al. Circuit cavity electromechanics in the strong-coupling regime. Nature, 471, 204-208(2011).

    [40] E M Purcell, H C Torrey, R V Pound. Resonance absorption by nuclear magnetic moments in a solid. Physical review, 69, 37(1946).

    [41] P R Berman. Cavity quantum electrodynamics(1994).

    [42] A Blais, R S Huang, A Wallraff et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Physical Review A, 69, 062320(2004).

    [43] H Walther, B T H Varcoe, B G Englert et al. Cavity quantum electrodynamics. Reports on Progress in Physics, 69, 1325(2006).

    [44] Ö O Soykal, M E Flatté. Strong field interactions between a nanomagnet and a photonic cavity. Physical review letters, 104, 077202(2010).

    [45] H Huebl, C W Zollitsch, J Lotze et al. High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Physical Review Letters, 111, 127003(2013).

    [46] Y Tabuchi, S Ishino, T Ishikawa et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Physical review letters, 113, 083603(2014).

    [47] Y Tabuchi, S Ishino, A Noguchi et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 349, 405-408(2015).

    [48] L Bai, M Harder, Y P Chen et al. Spin pumping in electrodynamically coupled magnon-photon systems. Physical Review Letters, 114, 227201(2015).

    [49] X Zhang, M Van Hulzen, D P Singh et al. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling. Nature communications, 6, 1-7(2015).

    [50] L Bai, M Harder, P Hyde et al. Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton. Physical review letters, 118, 217201(2017).

    [51] D Lachance-Quirion, Y Tabuchi, S Ishino et al. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet. Science Advances, 3, e1603150(2017).

    [52] J W Rao, S Kaur, B M Yao et al. Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device. Nature Communications, 10, 2934(2019).

    [53] L Bai, M Harder, P Hyde et al. Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton. Physical review letters, 118, 217201(2017).

    [54] Y P Wang, G Q Zhang, D Zhang et al. Bistability of cavity magnon polaritons. Physical review letters, 120, 057202(2018).

    [55] Z Wang, H Y Yuan, Y Cao et al. Twisted magnon frequency comb and Penrose superradiance. Physical Review Letters, 129, 107203(2022).

    [56] J W Rao, B Yao, C Y Wang et al. Unveiling a pump-induced magnon mode via its strong interaction with walker modes. Physical Review Letters, 130, 046705(2023).

    [57] B Yao, Y S Gui, J W Rao et al. Coherent microwave emission of gain-driven polaritons. Physical Review Letters, 130, 146702(2023).

    [58] M X Bi, X H Yan, Y Zhang et al. Tristability of cavity magnon polaritons. Physical Review B, 103, 104411(2021).

    [59] D Zhang, X Q Luo, Y P Wang et al. Observation of the exceptional point in cavity magnon-polaritons. Nature communications, 8, 1368(2017).

    [60] X Zhang, K Ding, X Zhou et al. Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons. Physical review letters, 123, 237202(2019).

    [61] Y Cao, P Yan. Exceptional magnetic sensitivity of P T-symmetric cavity magnon polaritons. Physical Review B, 99, 214415(2019).

    [62] B Z Rameshti, G E W Bauer. Indirect coupling of magnons by cavity photons. Physical Review B, 97, 014419(2018).

    [63] N J Lambert, J A Haigh, A J Ferguson. Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity. Journal of Applied Physics, 117(2015).

    [64] B Yao, Y Cheng, Z Wang et al. DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nature communications, 8, 1122(2017).

    [65] A Osada, R Hisatomi, A Noguchi et al. Cavity optomagnonics with spin-orbit coupled photons. Physical review letters, 116, 223601(2016).

    [66] S V Kusminskiy, H X Tang, F Marquardt. Coupled spin-light dynamics in cavity optomagnonics. Physical Review A, 94, 033821(2016).

    [67] S V Kusminskiy. Cavity optomagnonics. Optomagnonic Structures: Novel Architectures for Simultaneous Control of Light and Spin Waves, 299-353(2021).

    [68] X Zhang, C L Zou, L Jiang et al. Science Advances 2, e1501286 (2016).

    [69] J Li, S Y Zhu, G S Agarwal. Magnon-photon-phonon entanglement in cavity magnomechanics. Physical review letters, 121, 203601(2018).

    [70] X Zhang, C L Zou, L Jiang et al. Strongly coupled magnons and cavity microwave photons. Physical review letters, 113, 156401(2014).

    [71] B M Yao, Y S Gui, Y Xiao et al. Theory and experiment on cavity magnon-polariton in the one-dimensional configuration. Physical Review B, 92, 184407(2015).

    [72] B Yao, Y S Gui, J W Rao et al. Cooperative polariton dynamics in feedback-coupled cavities. Nature communications, 8, 1437(2017).

    [73] S Kaur, B M Yao, J W Rao et al. Voltage control of cavity magnon polariton. Applied Physics Letters, 109(2016).

    [74] J W Rao, B M Yao, X L Fan et al. Electric control of cooperative polariton dynamics in a cavity-magnon system. Applied Physics Letters, 112(2018).

    [75] B Yao, T Yu, Y S Gui et al. Coherent control of magnon radiative damping with local photon states. Communications Physics, 2, 161(2019).

    [76] V L Grigoryan, K Shen, K Xia. Synchronized spin-photon coupling in a microwave cavity. Physical Review B, 98, 024406(2018).

    [77] M. Harder, Y. Yang, B.M. Yao, C.H. Yu, J.W. Rao, Y.S. Gui, R.L. Stamps, C.-M. Hu. Physical Review Letters121, 137203(2018).

    [78] N R Bernier, L D Tóth, A K Feofanov et al. Level attraction in a microwave optomechanical circuit. Physical Review A, 98, 023841(2018).

    [79] Y P Wang, J W Rao, Y Yang et al. Nonreciprocity and unidirectional invisibility in cavity magnonics. Physical review letters, 123, 127202(2019).

    [80] W Yu, T Yu, G E W Bauer. Circulating cavity magnon polaritons. Physical Review B, 102, 064416(2020).

    [81] T Yu, Y X Zhang, S Sharma et al. Magnon accumulation in chirally coupled magnets. Physical review letters, 124, 107202(2020).

    [82] J Qian, J W Rao, Y S Gui et al. Manipulation of the zero-damping conditions and unidirectional invisibility in cavity magnonics. Applied Physics Letters, 116(2020).

    [83] J W Rao, S Kaur, B M Yao et al. Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device. Nature Communications, 10, 2934(2019).

    [84] A Amo, T C H Liew, C Adrados et al. Exciton–polariton spin switches. Nature Photonics, 4, 361-366(2010).

    [85] J W Rao, P C Xu, Y S Gui et al. Interferometric control of magnon-induced nearly perfect absorption in cavity magnonics. Nature communications, 12, 1933(2021).

    [86] W Hu, Z Ye, L Liao et al. 128× 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Optics Letters, 39, 5184-5187(2014).

    [87] W D Hu, X S Chen, Z H Ye et al. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification. Applied Physics Letters, 99(2011).

    Tools

    Get Citation

    Copy Citation Text

    Chun-Ke WEI, Jin-Wei RAO, Bi-Mu YAO. Research progress of cavity magnon-polariton systems[J]. Journal of Infrared and Millimeter Waves, 2023, 42(5): 622

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 6, 2023

    Accepted: --

    Published Online: Aug. 30, 2023

    The Author Email: RAO Jin-Wei (raojw@shanghaitech.edu.cn), YAO Bi-Mu (yaobimu@mail.sitp.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2023.05.007

    Topics