Infrared and Laser Engineering, Volume. 53, Issue 9, 20240253(2024)
Review of advances in small object detection technology based on deep learning (invited)
[1] [1] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context [C]Proceedings of the European Conference on Computer Vision, 2014: 740755.
[3] N NGUYEN, T DO, NGO T DUC et al. An evaluation of deep learning methods for small object detection. Journal of Electrical and Computer Engineering, 2020, 1-18(2020).
[6] G CHENG, X YUAN, X W YAO et al. Towards large-scale small object detection: Survey and benchmarks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 13467-13488(2023).
[7] [7] REKAVI A M, RASHIDI S, BOUSSAID F, et al. Transfmers in small object detection: A benchmark survey of stateoftheart [DBOL].(20230910)[20240903]. https:arxiv.gabs2309.04902.
[10] A BOUKERCHE, Z Y HOU. Object detection using deep learning methods in traffic scenarios. ACM Computing Surveys, 54, 1-35(2021).
[12] [12] WANG J W, WEN Y, GUO H W, et al. Tiny object detection in aerial images [C]Proceedings of the International Conference on Pattern Recognition, 2021: 37913798.
[13] [13] XIA G S, BAI X, DING J, et al. DOTA: A largescale dataset f object detection in aerial images [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 39743983.
[14] [14] YU X H, GONG Y Q, JIANG N, et al. Scale match f tiny person detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2020: 12571265.
[15] [15] KRISHNA H, JAWAHAR C V. Improving small object detection [C]Proceedings of the Asian Conference on Pattern Recognition, 2017: 340345.
[16] [16] CHEN C Y, LIU M, TUZEL O, et al. RCNN f small object detection [C]Proceedings of the Asian Conference on Pattern Recognition, 2017: 214230.
[18] [18] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, realtime object detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2016: 779788.
[19] [19] LV W Y, ZHAO Y, XU S L, et al. DETRs beat YOLOs on realtime object detection [DBOL].(20230706)[20240905]. https:arxiv.gabs2304.08069.
[20] [20] DENG J, DONG W, SOCHER R, et al. Image: A largescale hierarchical image database [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2009: 248255.
[22] [22] DU D K, ZHU P H, WEN L, et al. VisDroneDET2019: The vision meets drone object detection in image challenge results [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 213226.
[23] [23] ZHU H, CHEN X, DAI W J, et al. ientation robust object detection in aerial images using deep convolutional neural wk [C]Proceedings of the International Conference on Image Processing, 2015: 37353739.
[24] [24] YANG S, LUO P, CHENG M M, et al. WIDER FACE: A face detection benchmark [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2016: 55255533.
[25] [25] ZHANG S, BENENSON R, SCHIELE B. CityPersons: A diverse dataset f pedestrian detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2017: 32133221.
[31] Y X SHOU, T MENG, W L AI et al. Object detection in medical images based on hierarchical transformer and mask mechanism. Computational Intelligence and Neuroscience, 2022, 1-12(2022).
[32] Wei PEI, Yanming XU, Yongying ZHU et al. The target detection method of aerial photography images with improved SSD. Journal of Software, 30, 738-758(2019).
[33] Xue SHAN, Hongyu An, Qiongying Lv et al. Image target detection algorithm based on YOLOv7-tiny in complex background. Infrared and Laser Engineering, 53, 20230472(2024).
[35] Renhao CAI, Ning CHENG, Zhiyong PENG et al. Lightweight infrared dim vehicle target detection algorithm based on deep learning. Infrared and Laser Engineering, 51, 20220253(2022).
[36] [36] CIRESAN D, MEIER U, SCHHUBER J. Multicolumn deep neural wks f image classification [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2012: 36423649.
[37] [37] WAN L, ZEILER M, ZHANG S X, et al. Regularization of neural wks using Connect [C]Proceedings of the International Conference on Machine Learning, 2013: 10581066.
[39] A KRIZHEVSKY, I SUTSKEVER, G E HINTON. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097-1105(2012).
[40] [40] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2017: 72637271.
[41] [41] DEVRIES T, TAYL G W. Improved regularization of convolutional neural wks with cutout [DBOL].(20171129) [20240902]. https:arxiv.gabs1708.04552.
[42] [42] ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: Beyond empirical risk minimization [DBOL].(20170427)[20240901]. https:arxiv.gabs1710.09412.
[43] [43] YUN S D, HAN D Y, OH S J, et al. CutMix: Regularization strategy to train strong classifiers with localizable features [C]Proceedings of the International Conference on Computer Vision, 2019: 60236032.
[44] [44] TOUVRON H, CD M, DOUZE M, et al. Training dataefficient image transfmers & distillation through attention [DBOL].(20210115)[20240905].https:arxiv.gabs2012.12877.
[45] [45] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed accuracy of object detection [DBOL]. (20200423)[20240906]. https:arxiv.gabs2004.10934.
[46] [46] KISANTAL M, WOJNA Z, MURAWSKI J, et al. Augmentation f small object detection [DBOL].(20190219)[20240905]. https:arxiv.gabs1902.07296.
[47] [47] CHEN C R, ZHANG Y, LV Q X, et al. RR: A hybrid detect f object detection in dronecaptured images [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition Wkshops, 2019: 100108.
[50] [50] BOSQUET B, CES D, SEIDENARI L, et al. A full data augmentation pipeline f small object detection based on generative adversarial wks [J]. Pattern Recognition, 2023, 133: 108998.
[52] [52] CUBUK E D, ZOPH B, SHLENS J, et al. Raugment: Practical automated data augmentation with a reduced search space [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition Wkshops, 2020: 30083017.
[53] [53] ZOPH B, LE V Q. Neural architecture search with reinfcement learning [DBOL].(20170215)[20240905]. https:arxiv.gabs1611.01578.
[54] [54] LI P, LIU X, XIE X. Learning samplespecific policies f sequential image augmentation [C]Proceedings of the International Conference on Multimedia, 2021: 44914500.
[55] [55] RUKUNDO O, CAO H Q. Nearest neighb value interpolation [DBOL].(20190304)[20240905]. https:arxiv.gabs1211.1768.
[57] [57] SINGH B, DAVIS L S. An analysis of scale invariance in object detection SNIP [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 35783587.
[58] [58] WANG I, CHEN K Y, XU R, et al. CARAFE: Contentaware reassembly of features [C]Proceedings of the International Conference on Computer Vision, 2019: 30073016.
[60] [60] FENG C Y, LIU W Z, RANGA A, et al. DSSD: Deconvolutional single shot detect [DBOL].(20170123)[20240906]. https:arxiv.gabs1701.06659.
[61] [61] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detect [C]Proceedings of the European Conference on Computer Vision, 2016: 2137.
[62] [62] ZHOU P, NI B, GENG C, et al. Scaletransferrable object detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 528537.
[64] [64] SHI W Z, CABALLERO J, THEIS L, et al. Realtime single image video superresolution using an efficient subpixel convolutional neural wk [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2016: 18741883.
[65] [65] MAZZINI D. Guided upsampling wk f realtime semantic segmentation [DBOL].(20180719)[20240905]. https:arxiv.gabs1807.07466.
[67] [67] GOODFELLOW I, POUGETABLEDIEU M, MIRZA M, et al. Generative adversarial s [DBOL].(20140610)[20240905]. https:arxiv.gabs1406.2661.
[68] [68] LI J, LIANG X D, WEI Y C, et al. Perceptual generative adversarial wks f small object detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2017: 12221230.
[69] [69] BAI Y, ZHANG Y, DING M, et al. Finding tiny faces in the wild with generative adversarial wk [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 2130.
[70] [70] NOH J S, BAE W H, LEE W Y, et al. Better to follow, follow to be better: Towards precise supervision of feature superresolution f small object detection [C]Proceedings of the International Conference on Computer Vision, 2019: 97259734.
[72] [72] RABBI J, RAY N, SCHUBERT M, et al. Smallobject detection in remote sensing images with endtoend edgeenhanced GAN object detect wk [J]. Remote Sensing, 2020, 12(9): 1342.
[74] [74] MENKE M, THOMAS W, SCHWUNG A A. Improving GANbased domain adaptation f object detection [C]Proceedings of the International Conference on Intelligent Transptation Systems, 2022: 38803885.
[75] [75] HOFFMAN J, TZENG E, PARK T, et al. CyCADA: Cycleconsistent adversarial domain adaptation [C]Proceedings of the International Conference on Machine Learning, 2018: 19891998.
[76] [76] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyra wks f object detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2017: 21172125.
[77] [77] SINGH B, NAJIBI M, DAVIS L S. SNIPER: Efficient multiscale training[C]Proceedings of the 32nd International Conference on Neural Infmation Processing Systems, 2018: 93339343.
[78] [78] LI Z Q, ZHOU F, et al. FSSD: Feature fusion single shot multibox detect [DBOL].(20180517)[20240903]. https:arxiv.gabs1712.00960.
[81] [81] LIU S F, QIN L, QIN H X, et al. Path aggregation wk f instance segmentation [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 87598768.
[82] [82] REDMON J, FARHADI A. YOLOv3: An incremental improvement [DBOL].(20180408)[20240903]. https:arxiv.gabs1804.02767.
[83] [83] WOO S, HWANG S Y, KWEON I S. Stair: Topdown semantic aggregation f accurate one shot detection [C]Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2018: 10931102.
[84] [84] MA J, CHEN B. Dual refinement feature pyra wks f object detection [DBOL].(20201204)[20240903]. https:arxiv.gabs2012.01733.
[87] [87] LIU S F, HUANG D W, WANG Y D. Learning spatial fusion f singleshot object detection [DBOL].(20191125)[20240901]. https:arxiv.gabs1911.09516.
[88] [88] DAI Y D, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion [C]Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2021: 35603569.
[89] [89] TAN M X, PANG R M, LE Q V. EfficientDet: Scalable efficient object detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2020: 1078110790.
[90] M B HONG, S W LI, Y C YANG et al. SSPNet: Scale selection pyramid network for tiny person detection from UAV images. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).
[91] Xingxing XIE, Gong CHENG, Yanqing YAO et al. Dynamic feature fusion for object detection in remote sensing images. Chinese Journal of Computers, 45, 735-747(2022).
[92] X L Wang, Z Y Liang, T Liu. Feature attention pyramid-based remote sensing image object detection method. National Remote Sensing Bulletin, 27, 20235011-501(2023).
[93] Xiao WANG, Ziqi LI, Tao GAO et al. Traffic target detection algorithm based on non-loss cross-scale feature fusion. China Journal of Highway and Transport, 36, 315-325(2023).
[95] J G WU, Z PAN, B Y LEI et al. FSANet: Feature-and-spatial-aligned network for tiny object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17(2020).
[96] H L CHEN, Q WANG, W J RUAN et al. ALFPN: Adaptive learning feature pyramid network for small object detection. International Journal of Intelligent Systems, 2023, 1-14(2023).
[100] [100] GUPTA S, HARIHARAN B, MALIK J. Expling person context local scene context f object detection [DBOL].(20191125)[20240903]. https:arxiv.gabs1511.08177.
[101] [101] HU P, RAMANAN D. Finding tiny faces [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2017: 951959.
[103] [103] ZHU Y Z, ZHAO C J, WANG J, et al. Couple: Coupling global structure with local parts f object detection [C]Proceedings of the IEEE International Conference on Computer Vision, 2017: 41264134.
[104] [104] TANG X H, DU D K, HE Z, et al. PyraBox: A contextassisted single shot face detect [C]Proceedings of the European Conference on Computer Vision, 2018: 797813.
[105] [105] LIM J, ASTRID M, YOON H, et al. Small object detection using context attention [C]Proceedings of the International Conference on Artificial Intelligence in Infmation Communication, 2021: 181186.
[109] G M CHENG, C LANG, M H WU et al. Feature enhancement network for object detection in optical remote sensing images. Journal of Remote Sensing, 2021, 1-15(2021).
[111] Y L WU, K ZHANG, J Y WANG et al. CDD-Net: A context-driven detection network for multiclass object detection. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2020).
[114] Y L WU, K ZHANG, J Y WANG et al. GCWNet: A global context-weaving network for object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-12(2022).
[117] [117] WANG C Y, WANG H W, PAN P P. Local contrast global contextual infmation make infrared small object salient again [DBOL].(20230308)[20240901]. https:arxiv.gabs2301.12093.
[118] [118] ZHANG Z Y, GONG P, HAO Tian, et al. Dynamic local global context explation f small object detection [C]Proceedings of the IEEE International Conference on Acoustics, Speech Signal Processing, 2023: 15.
[119] [119] SIMONYAN K, ZISSERMAN A. Very deep convolutional wks f largescale image recognition [DBOL] (20150410)[20240910]. https:arxiv.gabs1409.1556.
[120] [120] SZEGERDY C, IOFFE S, VANHOUCKE V, et al. Inceptionv4, InceptionRes the impact of residual connections on learning [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2015: 19.
[121] [121] SZEGERDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2016: 28182826.
[122] [122] SZEGERDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture f computer vision [DBOL].(20151211)[20240903]. https:arxiv.gabs1512.00567.
[123] [123] HU H, ZHANG Z, XIE Z D, et al. Local relation wks f image recognition [C]Proceedings of the IEEE International Conference on Computer Vision, 2019: 34643473.
[124] [124] LIU Z, MAO H Z, WU C Y, et al. A Conv f the 2020s [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2022: 1197611986.
[125] [125] DING X H, ZHANG X Y, HAN J G, et al. Scaling up your kernels to 31x31: Revisiting large kernel design in CNNs [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2022: 1196311975.
[126] [126] LIU S, CHEN T Y, DING X H, et al. Me Convs in the 2020s: Scaling up kernels beyond 51×51 using sparsity [DBOL]. (20230503)[20240906]. https:arxiv.gabs2207.03620.
[127] [127] LI Y, HOU Q, ZHANG Z H, et al. Large ive kernel wk f remote sensing object detection [DBOL].(20130520)[20240903]. https:arxiv.gabs2303.09030.
[128] [128] LYU C, ZHANG W Z, HUANG H, et al. RTMDet: An empirical study of designing realtime object detects [DBOL].(20221216)[20240902]. https:arxiv.gabs2212.07784.
[129] [129] CHEN Y, YUAN X X, WU R F, et al. YOLOMS: Rethinking multiscale representation learning f realtime object detection [DBOL].(20230810)[20240901]. https:arxiv.gabs2308.05480.
[130] H YU, Y LI, Z P CHEN et al. A small object detection algorithm based on modulated deformable convolution and large kernel convolution. Computational Intelligence and Neuroscience, 2023, 2506274(2023).
[132] [132] YANG T, ZHANG X Y, LI Z M, et al. MetaAnch: Learning to detect objects with customized anchs [J]. Advances in Neural Infmation Processing Systems, 2018, 31.
[133] [133] WANG J F, CHEN K, YANG S, et al. Region proposal by guided anching [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 29652974.
[134] [134] LAW H, DENG J F, et al. Cner: Detecting objects as paired keypoints [C]Proceedings of the European Conference on Computer Vision, 2018: 734750.
[135] [135] LAW H, TENG Y B, RUSSAKOVSKY O, et al. CnerLite: Efficient keypoint based object detection [DBOL].(20200916)[20240903]. https:arxiv.gabs1904.08900.
[136] [136] DUAN K W, BAI S, XIE L X, et al. Center: Keypoint triplets f object detection [C]Proceedings of the IEEE International Conference on Computer Vision, 2019: 65696578.
[137] [137] HOU X L, ZHUO J W, KRAHENBUHL P, et al. Bottomup object detection by grouping extreme center points [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 850859.
[138] [138] ZHOU X Y, WANG D Q, KRÄHENBUHL P, et al. Objects as points [DBOL].(20190425)[20240903]. https:arxiv.gabs1904.07850.
[139] [139] YANG Z E, LIU S S, HU H, et al. RepPoints: Point set representation f object detection [C]Proceedings of the IEEE International Conference on Computer Vision, 2019: 96579666.
[140] [140] ZHU C C, HE Y T, SAVVIDES M, et al. Feature ive anchfree module f singleshot object detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 840849.
[141] [141] TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional onestage object detection [C]Proceedings of the IEEE International Conference on Computer Vision, 2019: 96279636.
[143] [143] GE Z H, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021 [DBOL].(20210806)[20240903]. https:arxiv.gabs2107.08430.
[144] [144] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv6: A singlestage object detection framewk f industrial applications [DBOL].(20220907)[20240906]. https:arxiv.gabs2209.02976.
[145] [145] FENG C J, ZHONG Z Y, WU Y C, et al. TOOD: Taskaligned onestage object detection [C]Proceedings of the IEEE International Conference on Computer Vision, 2021: 34903499.
[148] L SHI, Y W LI, X L ZHU et al. Anchor-free remote sensing detector based on solving discrete polar coordinate equation. Applied Intelligence (Dordrecht, Netherlands), 53, 27704-27724(2023).
[149] [149] WANG X G, WANG G W, DANG Q, et al. PPYOLOER: An efficient anchfree rotated object detect [DBOL].(20221104)[20240903]. https:arxiv.gabs2211.02386.
[150] [150] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]Proceedings of the 31st International Conference on Neural Infmation Processing Systems, 2017: 60006010.
[151] [151] CARION N, MASSA F, SYNNAEVE G, et al. Endtoend object detection with transfmers [C]Proceedings of the European Conference on Computer Vision, 2020: 213229.
[152] [152] ZHU X Z, SUN W J, LU B, et al. Defmable DETR: Defmable transfmers f endtoend object detection [DBOL].(20210318)[20240905]. https:arxiv.gabs2010.04159.
[153] [153] CAO X Y, YUAN P, FENG B S, et al. Dynamic DETR: Endtoend object detection with dynamic attention [C]Proceedings of the IEEE International Conference on Computer Vision, 2021: 29882997.
[154] [154] CAO X Y, YUAN P, FENG B S, et al. CFDETR: Coarsetofine transfmers f endtoend object detection [C]Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 185193.
[155] [155] MA T, MA M Y, ZHANG H H, et al. iented object detection with transfmer [DBOL].(20210616)[20240905]. https:arxiv.gabs2106.03146.
[156] [156] SUN Z Q, CAO S C, YANG Y N, et al. Rethinking transfmerbased set prediction f object detection [C]Proceedings of the IEEE International Conference on Computer Vision, 2021: 36113620.
[157] [157] WANG Y T, ZHANG X Y, YANG T, et al. Anch DETR: Query design f transfmerbased object detection [DBOL].(20220104)[20240906]. https:arxiv.gabs2109.07107.
[158] [158] LIU S H, LI F, ZHANG H, et al. DABDETR: Dynamic anch boxes are better queries f DETR [DBOL].(20220330)[20240905]. https:arxiv.gabs2201.12329.
[159] [159] MENG D D, CHEN X K, FAN Z W, et al. Conditional DETR f fast training convergence [C]Proceedings of the IEEE International Conference on Computer Vision, 2021: 36513660.
[160] [160] CHEN X, WEI F, ZENG G, et al. Conditional DETR V2: Efficient detection transfmer with box queries [DBOL].(20220718)[20240903]. https:arxiv.gabs2207.08914.
[161] [161] HE L, TODOVIC S. DESTR: Object detection with split transfmer [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2022: 93779386.
[162] [162] LI F, ZHANG H, LIU S, et al. DNDETR: Accelerate DETR training by introducing query denoising [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2022: 1361913627.
[163] [163] ZHANG H, LI F, LIU S, et al. DINO: DETR with improved denoising anch boxes f endtoend object detection [DBOL]. (20220711)[20240903]. https:arxiv.gabs2203.03605.
[164] [164] CHEN Q, CHEN X, WANG J, et al. Group DETR: Fast DETR training with groupwise onetomany assignment [DBOL]. (20230831)[20240903]. https:arxiv.gabs2207.13085.
[165] [165] JIA D, YUAN Y, ZHAO H H, et al. DETRs with hybrid matching [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2023: 1970219712.
[166] [166] ZONG Z Y, SONG G X, LIU Y, et al. DETRs with collabative hybrid assignments training [C]Proceedings of the IEEE International Conference on Computer Vision, 2023: 67486758.
[168] [168] ZHANG C, LIU L J, ZHANG X X, et al. DETR++: Taming your multiscale detection transfmer [DBOL].(20220607)[20240905]. https:arxiv.gabs2206.02977.
[169] [169] ZHANG H, SUN W J, CAO Y, et al. Guided attentive feature fusion f multispectral pedestrian detection [C]Proceedings of the European Symposium on Artificial Neural wks, 2016, 587: 509514.
[170] [170] WANG J M, ZHANG F, SHEN C H, et al. Multispectral pedestrian detection using deep fusion convolutional neural wks [C]Proceedings of the International Conference on Image Analysis Recognition, 2018: 419426.
[171] M VANDERSTEEGEN, BEECK K VAN, T GOEDEME. Real-time multispectral pedestrian detection with a single-pass deep neural network. Image Analysis and Recognition, 10882, 419-426(2018).
[172] [172] CUI C H, XIE J Y, YANG Y C H. Bright channel pri attention f multispectral pedestrian detection [DBOL].(20230522)[20240903]. https:arxiv.gabs2305.12845.
[173] J J ZHANG, J LEI, W M XIE et al. SuperYOLO: Super resolution assisted object detection in multimodal remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-15(2023).
[174] [174] LIU J J, ZHANG S T, WANG S, et al. Multispectral deep neural wks f pedestrian detection [DBOL].(20161108)[20240902]. https:arxiv.gabs1611.02644.
[175] [175] KÖNIG D, ADAM M, JARVERS C, et al. Fully convolutional region proposal wks f multispectral person detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition Wkshops, 2017: 4956.
[176] [176] LEE Y H, BUI T D, SHIN J S. Pedestrian detection based on deep fusion wk using feature crelation [C]Proceedings of the AsiaPacific Signal Infmation Processing Association Annual Summit Conference, 2018: 694699.
[177] [177] CHOI H Y, KIM S, YOON K J. Multispectral pedestrian detection based on accumulated object proposal with fully convolutional wks [C]Proceedings of the International Conference on Pattern Recognition, 2016: 621626.
[178] [178] ZHENG Y, IZZAT I H, ZIAEE S. GFDSSD: Gated fusion double SSD f multispectral pedestrian detection [DBOL].(20190321)[20240905]. https:arxiv.gabs1903.06999.
[180] [180] ZHOU K L, CHEN L S, CAO X. Improving multispectral pedestrian detection by addressing modality imbalance problems [C]Proceedings of the European Conference on Computer Vision, 2020: 787803.
[181] [181] ZHANG H, FROMONT E, LEFÈVRE S, et al. Multispectral fusion f object detection with cyclic fuserefine blocks [C]Proceedings of the International Conference on Image Processing, 2020: 276280.
[183] [183] YANG X, QIAN Y, ZHU H Y, et al. BAA: Learning bidirectional adaptive attention gates f multispectral pedestrian detection [C]Proceedings of the International Conference on Robotics Automation, 2022: 29202926.
[189] [189] CHEN Y L, SHI J, YE Z Y, et al. Multimodal object detection via probabilistic ensembling [C]Proceedings of the European Conference on Computer Vision, 2022: 139158.
[190] [190] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss f dense object detection [C]Proceedings of the IEEE International Conference on Computer Vision, 2017: 29802988.
[191] [191] JI Z Q, KONG Q, WANG H C, et al. Small dense commodity object detection with multiscale receptive field attention [C]Proceedings of the International Conference on Multimedia, 2019: 13491357.
[192] [192] ZHANG H Y, WANG Y, DAYOUB F, et al. Varifocal: An IoUaware dense object detect [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2021: 85148523.
[193] [193] CHEN K, LI J G, LIN W Y, et al. Towards accurate onestage object detection with APLoss [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 51195127.
[194] [194] QIAN Q, CHEN L, ZHANG H W, et al. DR Loss: Improving object detection by distributional ranking [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2020: 1216412172.
[195] [195] WU J, ZHOU C, ZHANG Q, et al. Selfmimic learning f smallscale pedestrian detection [C]Proceedings of the ACM International Conference on Multimedia, 2020: 20122020.
[196] [196] YU J H, JIANG Y N, WANG Z Y, et al. UnitBox: An advanced object detection wk [C]Proceedings of the ACM International Conference on Multimedia, 2016: 516520.
[197] [197] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric a loss f bounding box regression [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 658666.
[198] [198] ZHENG Z H, WANG P, LIU W, et al. DistanceIoU loss: Faster better learning f bounding box regression [C]Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 1299313000.
[199] [199] WANG J S, CHANG X Y, YANG W Y, et al. A nmalized gaussian wasserstein distance f tiny object detection[DBOL]. (20220614)[20240906]. https:arxiv.gabs2110.13389.
[202] [202] XU C, WANG J, YANG W, et al. RFLA: Gaussian receptive field based label assignment f tiny object detection [C]Proceedings of the European Conference on Computer Vision, 2022: 526543.
[204] [204] HU Z H, WANG Y Z, LI P, et al. ISmall: Densely nested wk with label decoupling f infrared small target detection [C]Proceedings of the International Conference on Acoustics, Speech Signal Processing, 2023: 15.
[206] [206] GAO M H, YU R S, LI A J, et al. Dynamic zoomin wk f fast object detection in large images [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 69266935.
[207] [207] CAI Z W, VONCELOS N. Cade RCNN: Delving into high quality object detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 61546162.
[208] [208] CHEN S, LI J P, YAO C Q, et al. DuBox: Nopri box objection detection via residual dual scale detects [DBOL].(20190416)[20240906]. https:arxiv.gabs1904.06883.
[209] [209] YANG C L, HUANG Z L, WANG N Y, et al. QueryDet: Caded sparse query f accelerating highresolution small object detection [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2022: 1366813677.
[214] B Y LI, X H LI, S L LI et al. Cross-layer feature guided multiscale infrared small target detection. IEEE Geoscience and Remote Sensing Letters, 21, 7000205(2024).
[215] B YANG, X Y ZHANG, J ZHANG et al. EFLNet: Enhancing feature learning network for infrared small target detection. IEEE Transactions on Geoscience and Remote Sensing, 62, 5906511(2024).
[216] F M ZHANG, S F LIN, X L XIAO et al. Global attention network with multiscale feature fusion for infrared small target detection. Optics & Laser Technology, 168, 110012(2024).
[217] H XU, S J ZHONG, T ZHANG et al. Multiscale multilevel residual feature fusion for real-time infrared small target detection. IEEE Transactions on Geoscience and Remote Sensing, 61, 5002116(2023).
[218] [218] ZHU Z, LIANG D, ZHANG S H, et al. Trafficsign detection classification in the wild [C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2016: 21102118.
[219] [219] BENENSON R, OMRAN M, HOSANG J, et al. Ten years of pedestrian detection, what have we learned [C]Proceedings of the European Conference on Computer Vision, 2015: 613627.
[221] [221] BONDI E, JAISWAL R, AGARWAL P, et al. BIRDSAI: A dataset f detection tracking in aerial thermal infrared videos [C]Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2020: 17471756.
Get Citation
Copy Citation Text
Genghuan LIU, Xiangjin ZENG, Jiazhen DOU, Zhenbo REN, Liyun ZHONG, Jianglei DI, Yuwen QIN. Review of advances in small object detection technology based on deep learning (invited)[J]. Infrared and Laser Engineering, 2024, 53(9): 20240253
Category: Special issue—Computational optical imaging and application Ⅱ
Received: Jun. 4, 2024
Accepted: --
Published Online: Oct. 22, 2024
The Author Email: REN Zhenbo (zbren@nwpu.edu.cn)