Infrared and Laser Engineering, Volume. 52, Issue 3, 20220618(2023)

Pose estimation of flying target based on bi-modal information fusion

Ronghua Li1, Meng Wang1, Wei Zhou2, and Jiaru Fu1
Author Affiliations
  • 1Institute of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China
  • 2No.91550 Unit of the PLA, Dalian 116023, China
  • show less
    Figures & Tables(29)
    Flow chart of bimodal fusion algorithm
    Point cloud and image fusion
    Point cloud densification
    Moving object extraction
    Image morphological processing
    Target point cloud extraction
    Feature line extraction
    Point cloud model coordinate system
    Pose solution results
    Physical object and point cloud model
    Simulation data
    Display of pose calculation process in frame 20
    Display of pose calculation process in frame 30
    Pose solution error
    ICP algorithm error
    Two scene color pictures
    Comparison of image target extraction algorithms
    Calculation of target pose in different scenes
    • Table 1. Parameter range of RS-LD1605 M radar

      View table
      View in Article

      Table 1. Parameter range of RS-LD1605 M radar

      NameValue
      ModelRS-LD1605 M
      Horizontal field of view/(°)56
      Vertical field of view/(°)31
      Color image resolution2448×1378
      Depth image resolution640×360
      Horizontal angle resolution/(°)0.088
      Vertical angle resolution/(°)0.088
      Detection distance/m50
      Detection accuracy/cm5
      Frame rate/Hz12
    • Table 2. Comparison of algorithm accuracy

      View table
      View in Article

      Table 2. Comparison of algorithm accuracy

      GroupΔPx/mm ΔPy/mm ΔPz/mm Δβ/(°) Δγ/(°) Time/ms
      Proposed algorithm1.064.592.070.631.01132
      ICP algorithm2.938.374.210.941.62261
      PnP algorithm1.655.454.110.761.3337
      Algorithm in Ref.[10] 2.516.023.880.821.41327
    • Table 3. Comparison of target extraction accuracy of image

      View table
      View in Article

      Table 3. Comparison of target extraction accuracy of image

      SceneGroupTPFPTNFNPRPWC
      Scene AOur method1 52040336 968 42800.9620.8440.009 4%
      Background subtraction1 6276 015336 372 91730.2130.9040.183%
      Vibe algorithm1 642178336 956 61580.9020.9120.009 9%
      Algorithm in Ref. [5] 1 732117336 962 7680.9360.9620.005 5%
      Scene BOur method1 60731336 931 33930.9780.8030.013%
      Background subtraction1 6277 302336 204 23730.1820.8130.228%
      Vibe algorithm1 766725336 861 92340.7090.8830.028%
      Algorithm in Ref. [5] 1 9391 007336 833 7610.6580.9690.032%
    • Table 4. Time consuming for image target extraction

      View table
      View in Article

      Table 4. Time consuming for image target extraction

      GroupA/msB/ms
      Proposed algorithm301289
      Background subtraction153147
      Vibe algorithm271253
      Algorithm in Ref.[5] 206198
    • Table 5. Calculation results of target pose

      View table
      View in Article

      Table 5. Calculation results of target pose

      Scene numberΔPx/mm ΔPy/mm ΔPz/mm Δβ/(°) Δγ/(°)
      Scene A2.7015−0.414910.277843.681366.7326
      Scene B1.33680.172310.503682.83294.6933
    • Table 6. PnP pose calculation

      View table
      View in Article

      Table 6. PnP pose calculation

      Scene numberΔPx/mm ΔPy/mm ΔPz/mm Δβ/(°) Δγ/(°)
      Scene A2.7073−0.421310.281844.351865.3863
      Scene B1.33280.168510.507281.75675.3052
      Scene A2.7062−0.413710.274744.272165.8147
      Scene B1.33170.170510.509381.26025.3872
    • Table 7. Position and attitude error comparison

      View table
      View in Article

      Table 7. Position and attitude error comparison

      Scene numberΔPx/mm ΔPy/mm ΔPz/mm Δβ/(°) Δγ/(°)
      Scene A5.252.64.50.63−1.13
      Scene B−4.55−2.84.65−1.320.65
    • Table 8. Point cloud collection rate under different surface colors

      View table
      View in Article

      Table 8. Point cloud collection rate under different surface colors

      ColourWhiteBlueRed
      Acquisition rate10.970.94
    • Table 9. Number of point clouds at different object distances and surface colors

      View table
      View in Article

      Table 9. Number of point clouds at different object distances and surface colors

      GroupΔPx/mm ΔPy/mm ΔPz/mm Δβ/(°) Δγ/(°)
      Group A0.974.261.840.580.97
      Group B0.0610.0620.0390.0140.082
      Our algorithm1.064.592.070.631.01
    • Table 10. Position error

      View table
      View in Article

      Table 10. Position error

      GroupΔPx/mm ΔPy/mm ΔPz/mm
      Group A0.974.261.84
      Group B0.0610.0620.039
      Our method1.064.592.07
    • Table 11. Angle error

      View table
      View in Article

      Table 11. Angle error

      GroupΔβ/(°) Δγ/(°)
      Group A0.580.97
      Group B0.0140.082
      Our method0.631.01
    Tools

    Get Citation

    Copy Citation Text

    Ronghua Li, Meng Wang, Wei Zhou, Jiaru Fu. Pose estimation of flying target based on bi-modal information fusion[J]. Infrared and Laser Engineering, 2023, 52(3): 20220618

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Photoelectric measurement

    Received: Aug. 10, 2022

    Accepted: --

    Published Online: Apr. 12, 2023

    The Author Email:

    DOI:10.3788/IRLA20220618

    Topics