Optical Instruments, Volume. 41, Issue 4, 1(2019)
Light field multi-decryption image improvement algorithm based on deep learning
[2] [2] NG R. Digital light field photography[D]. California: Stanford University, 2006: 38. 39.
[3] [3] GEORGIEV T G, LUMSDAINE A. Focused plenoptic camera and rendering[J]. Journal of Electronic Imaging, 2010, 19(2): 021106.
[7] [7] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv: 1409.1556, 2014.
[10] [10] HAGAN M T, DEMUTH H B, BEALE M H, et al. Neural network design[M]. Beijing: China Machine Press, 2002.
[11] [11] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: ACM, 2012: 1097. 1105.
[12] [12] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640 – 651.
Get Citation
Copy Citation Text
ZHU Zhenhao, HAN Simin, ZHANG Wei. Light field multi-decryption image improvement algorithm based on deep learning[J]. Optical Instruments, 2019, 41(4): 1
Category:
Received: Sep. 22, 2018
Accepted: --
Published Online: Nov. 5, 2019
The Author Email: Zhenhao ZHU (zzh3035@qq.com)