Spectroscopy and Spectral Analysis, Volume. 42, Issue 2, 490(2022)

Accurate Quantitative Analysis of Valuable Components in Zinc Leaching Residue Based on XRF and RBF Neural Network

Yuan LI1、1; 2;, Yao SHI2、2; *;, Shao-yuan LI1、1; *;, Ming-xing HE3、3;, Chen-mu ZHANG2、2;, Qiang LI2、2;, and Hui-quan LI2、2; 4;
Author Affiliations
  • 11. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • 22. CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • 33. School of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China
  • show less
    Figures & Tables(9)
    The technical roadmap of the experiment
    Working curve of Cu (a), Pb (b), Zn (c), Cd (d), As (e) in the leaching residue
    The accuracy of the model's prediction results changes with the target error(a): Precision; (b): Acouracy
    The prediction results of the RBF neural network model for the five target elements in the leaching residue B, C, and D samples(a):Cu; (b): Pb; (c): Zn; (d): Cd; (e): As
    • Table 1. Measurement parameters of XRF

      View table
      View in Article

      Table 1. Measurement parameters of XRF

      项目管压
      /kV
      管流
      /μA
      测量时间
      /s
      测量元素范围
      /Z*
      参数498020016~92(S~U)
    • Table 2. Measurement parameters of ICP-OES

      View table
      View in Article

      Table 2. Measurement parameters of ICP-OES

      项目发射
      功率
      /kW
      载气等离子
      气流量/
      (L·min-1)
      辅助
      气流量/
      (L·min-1)
      雾化器
      流量/
      (L·min-1)
      校准
      类型
      参数1.0氩气151.50.75线性
    • Table 3. Test results by XRF of leaching residue samples to be tested (mg·kg-1)

      View table
      View in Article

      Table 3. Test results by XRF of leaching residue samples to be tested (mg·kg-1)

      序号样品CuPbZnCdAs
      11浸出渣B8 98459 937195 0343 3955 733
      22浸出渣B8 85155 501186 1113 0365 247
      33浸出渣B8 92857 184189 3433 1255 072
      44浸出渣B8 97859 671193 8903 3415 899
      55浸出渣B8 97659 785194 2753 3255 958
      61浸出渣C8 92853 639194 7451 9985 750
      72浸出渣C8 89754 273193 3792 3775 612
      83浸出渣C8 83953 123191 2482 3225 826
      94浸出渣C8 79052 498188 8292 2704 484
      105浸出渣C8 83452 775191 8412 3535 585
      111浸出渣D7 98969 391180 7242 0085 213
      122浸出渣D8 16670 913183 5821 9934 752
      133浸出渣D7 91870 227181 0941 9264 470
      144浸出渣D8 25574 085185 4521 8184 269
      155浸出渣D7 90668 751179 1031 9173 878
    • Table 4. Evaluation index of XRF working curve method

      View table
      View in Article

      Table 4. Evaluation index of XRF working curve method

      序号样品组分基准值/
      (mg·kg-1)
      检测结果均值/
      (mg·kg-1)
      评价指标
      RE/%SDRSD/%
      Cu9 4978 943.45.856.30.6
      Pb56 49358 415.64.11 986.13.4
      1浸出渣BZn177 301191 730.68.13 851.32.0
      Cd2 6883 244.420.7155.14.8
      As5 5495 581.86.2399.17.1
      Cu8 9978 857.63.154.70.6
      Pb52 68453 261.61.2707.91.3
      2浸出渣CZn175 875192 008.49.22 240.71.2
      Cd1 8782 26420.6154.06.8
      As5 5785 451.45.6549.810.1
      Cu7 4638 046.87.8156.01.9
      Pb70 41770 673.42.02 075.82.9
      3浸出渣DZn166 023181 9919.62 513.01.4
      Cd1 7181 932.412.575.43.9
      As4 9394 516.410.8502.911.1
    • Table 5. Evaluation index of XRF combined with RBF neural network method

      View table
      View in Article

      Table 5. Evaluation index of XRF combined with RBF neural network method

      序号样品组分基准值/
      (mg·kg-1)
      检测结果均值/
      (mg·kg-1)
      评价指标
      RE/%SDRSD/%
      Cu9 4979 487.8-0.0931.00.33
      Pb56 49356 490.30.0018.60.03
      1浸出渣BZn177 301177 325.80.0148.60.03
      Cd2 6885 547.70.5834.31.27
      As5 5495 581.8-0.026.50.12
      Cu8 8978 604.470.1317.10.20
      Pb52 68452 723.150.0795.20.18
      2浸出渣CZn175 875175 819.2-0.03279.10.16
      Cd1 8781 885.8090.4225.61.36
      As5 5785 589.8180.2232.60.58
      Cu7 4637 477.3770.1953.00.71
      Pb70 41770 433.330.02132.60.19
      3浸出渣DZn166 023166 212.60.11305.70.18
      Cd1 7181 714.995-0.1932.61.90
      As4 9394 968.570.5970.51.42
    Tools

    Get Citation

    Copy Citation Text

    Yuan LI, Yao SHI, Shao-yuan LI, Ming-xing HE, Chen-mu ZHANG, Qiang LI, Hui-quan LI. Accurate Quantitative Analysis of Valuable Components in Zinc Leaching Residue Based on XRF and RBF Neural Network[J]. Spectroscopy and Spectral Analysis, 2022, 42(2): 490

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Dec. 25, 2020

    Accepted: Apr. 28, 2021

    Published Online: Apr. 2, 2022

    The Author Email:

    DOI:10.3964/j.issn.1000-0593(2022)02-0490-08

    Topics