Bulletin of the Chinese Ceramic Society, Volume. 41, Issue 11, 3719(2022)
Research Progress on Preparation Technology of Long Wave Infrared Chalcogenide Glass
[5] [5] CHEN G R, CHENG J J. Relationship between the average coordination number and properties of chalconitride glasses[J]. Journal of the American Ceramic Society, 2005, 81(6): 16951697.
[8] [8] SANGHERA J S, AGGARWAL I D. Active and passive chalcogenide glass optical fibers for IR applications: a review[J]. Journal of NonCrystalline Solids, 1999, 256/257: 616.
[9] [9] Development and infrared applications of chalcogenide glass optical fibers[J]. Fiber and Integrated Optics, 2000, 19(3): 251274.
[10] [10] ZHANG X H, MA H, LUCAS J. Application of chalcogenide glass bulks and fibers[J]. Journal of Optoelectronics and Advanced Materials, 2003, 5(5): 13271333.
[11] [11] HILTON A R. Chalcogenide glasses for infrared optics[M]. New York: McGrawHill Companies, 2010: 7189.
[12] [12] LUCAS J, TROLES J, ZHANG X H, et al. Glasses to see beyond visible[J]. Comptes Rendus Chimie, 2018, 21(10): 916922.
[13] [13] BAYYA S S, GIBSON D J, NGUYEN V Q, et al. Multispectral imaging system comprising new multispectral optics: US9658105[P]. 20170523.
[14] [14] SAVAGE J A, LEWIS K L, WHITEHOUSE R H L. Recent progress in the synthesis of calcium lanthanum sulphide optical ceramic[C]//Proc SPIE 0588, Recent Developments in Materials & Detectors for the Infrared, 1986, 0588: 127132.
[15] [15] SAVAGE J A, LEWIS K L, KINSMAN B E, et al. Fabrication of infrared optical ceramics in the CaLa2S4La2S3 solid solution system[C]//SPIE Proceedings, Infrared and Optical Transmitting Materials. San Diego: SPIE, 1986, 683: 7984.
[23] [23] LEZAL D. Chalcogenide glassessurvey and progress[J]. Journal of Optoelectronics and Advanced Materials, 2003, 5(1): 2334.
[24] [24] WEI W H, FANG L, SHEN X, et al. Transition threshold in GexSb10Se90-x glasses[J]. Journal of Applied Physics, 2014, 115(11): 113510.
[25] [25] WEI W H, SHEN X, XU S W, et al. Structural investigations of GexSb10Se90-x glasses using Xray photoelectron spectroscopy[J]. Journal of Applied Physics, 2014, 115(18): 183506.
[26] [26] CHOI J, CHA D, KIM J H, et al. Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses[J]. Journal of Materials Research, 2016, 31: 16741680.
[29] [29] HILTON A R, HAYES D J, RECHTIN M D. Infrared absorption of some highpurity chalcogenide glasses[J]. Journal of NonCrystalline Solids, 1975, 17(3): 319338.
[30] [30] REITTER A M, SREERAM A N, VARSHNEYA A K, et al. Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses[J]. Journal of NonCrystalline Solids, 1992, 139: 121128.
[33] [33] SYLLAIOS A J, AUTERY W D, TYBER G S, et al. System and method for vapor pressure controlled growth of infrared chalcogenide glasses: US7159419[P]. 20070109.
[36] [36] LIN C G, RSSEL C, DAI S X. Chalcogenide glassceramics: functional design and crystallization mechanism[J]. Progress in Materials Science, 2018, 93: 144.
[37] [37] BENJAMIN J S. Dispersion strengthened superalloys by mechanical alloying[J]. Metallurgical Transactions, 1970, 1(10): 29432951.
[38] [38] KOCH C C. Materials synthesis by mechanical alloying[J]. Annual Review of Materials Science, 1989, 19(1): 2943 2951.
[40] [40] MIZUNO F, HAYASHI A, TADANAGA K, et al. New, highly ionconductive crystals precipitated from LiSP2S glasses[J]. Advanced Materials, 2005, 17(7): 918921.
[41] [41] HAYASHI A, MINAMI K, UJIIE S, et al. Preparation and ionic conductivity of Li7P3S11 z glassceramic electrolytes[J]. Journal of NonCrystalline Solids, 2010, 356(44/45/46/47/48/49): 26702673.
[42] [42] TATSUMISAGO M, HAYASHI A. Superionic glasses and glassceramics in the Li2SP2S5 system for allsolidstate lithium secondary batteries[J]. Solid State Ionics, 2012, 225: 342345.
[43] [43] TREVEY J, JANG J S, JUNG Y S, et al. Glassceramic Li2SP2S5 electrolytes prepared by a single step ball billing process and their application for allsolidstate lithiumion batteries[J]. Electrochemistry Communications, 2009, 11(9): 18301833.
[44] [44] HUBERT M, DELAIZIR G, MONNIER J, et al. An innovative approach to develop highly performant chalcogenide glasses and glassceramics transparent in the infrared range[J]. Optics Express, 2011, 19(23): 2351323522.
[48] [48] GAFFET E, HARMELIN M. Crystalamorphous phase transition induced by ballmilling in silicon[J]. Journal of the Less Common Metals, 1990, 157(2): 201222.
[49] [49] WHITE W B, CHESS D, CHESS C A, et al. CaLa2S4: ceramic window material for the 8 to 14 pm region[C]//25th Annual Technical Symposium. Proc SPIE 0297, Emerging Optical Materials. San Diego: SPIE, 1982, 0297: 3843.
[50] [50] SAUNDERS K J, WONG T Y, HARTNETT T M, et al. Current and future development of calcium lanthanum sulfide[C]//30th Annual Technical Symposium. Proc SPIE 0683, Infrared and Optical Transmitting Materials. San Diego: 1986, 0683: 7278.
[51] [51] LI HSING W, MING SHYNG T, MIN HSIUNG H. Dispersion of precursors for improving the homogeneity and sinterability of CaLa2S4 powders[J]. Materials Chemistry and Physics, 1993, 35(1): 6470.
[52] [52] WANG L H, HON M. Effects of sulfidization and sintering temperatures of CaLa2S4 powder on its optical property[J]. Japanese Journal of Applied Physics, 1992, 31: 21772180.
[53] [53] TSAY B J, HSING WANG L, HSIUNG HON M. Formation and densification of CaLa2S4 powders by sulfidization of modified metal alkoxides in different atmospheres[J]. Materials Science and Engineering: B, 2000, 72(1): 3135.
[54] [54] LI P S, JIE W Q, LI H Y. Influences of hotpressing conditions on the optical properties of lanthanum sulfide ceramics[J]. Journal of the American Ceramic Society, 2011, 94(4): 11621166.
[55] [55] DURAND G R, BIZOT Q, HERBERT N, et al. Processing of CaLa2S4 infrared transparent ceramics: a comparative study of HP and FAST/SPS techniques[J]. Journal of the American Ceramic Society, 2020, 103(4): 23282339.
[57] [57] LI C K, LIU H J, ZHOU G J, et al. Infrared GRIN GeS2Sb2S3CsCl chalcogenide glassceramics[J]. Journal of the American Ceramic Society, 2022, 105(10): 60076012.
[58] [58] SISKEN L, KANG M, VERAS J M, et al. Infrared glassceramics with multidispersion and gradient refractive index attributes[J]. Advanced Functional Materials, 2019, 29(35): 1902217.
Get Citation
Copy Citation Text
ZHAO Hua, ZHANG Huihui, ZU Chengkui, LIU Yonghua, ZHOU Peng, ZHANG Baodong, PAN Feng, HE Kun, HAN Bin. Research Progress on Preparation Technology of Long Wave Infrared Chalcogenide Glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3719
Category:
Received: Aug. 15, 2022
Accepted: --
Published Online: Dec. 26, 2022
The Author Email:
CSTR:32186.14.