Optics and Precision Engineering, Volume. 32, Issue 19, 2971(2024)

Degradation remote sensing image quality enhancement based on frequency-domain-spatial-domain hybrid attention

Hua WEI1... Xiongxin TANG1, Haitao NIE2,*, Jing WANG1, Hanxiang YANG1, Yuanyuan XIA1 and Fanjiang XU1 |Show fewer author(s)
Author Affiliations
  • 1Laboratory of Science and Technology on Integrated Information System, Institute of Software, Chinese Academy of Sciences, Beijing0090, China
  • 2Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
  • show less
    Figures & Tables(15)
    Degradation process of remote sensing image
    Example of remote sensing degraded images
    Architecture of LFSNet network
    Frequency domain feature residual module
    Structure of mixed attention feature extraction module
    Five different degradation kernels and corresponding degradation images
    Comparison of restoration visualization in mountainous areas
    Comparison of restoration visualization in farmland areas
    Comparison of restoration visualization in village areas
    Comparison of restoration visualization in port areas
    MTF curve comparison
    • Table 1. Statistics of simulation dataset

      View table
      View in Article

      Table 1. Statistics of simulation dataset

      数据集图片数量
      训练集10 000
      验证集15 00
    • Table 2. NIQE values of different algorithms on high resolution GaoFen-2 images

      View table
      View in Article

      Table 2. NIQE values of different algorithms on high resolution GaoFen-2 images

      方法区域1:山地区域2:农田区域3:村落区域4:港口
      原始图像11.829.379.3013.64
      Pan等119.7018.8819.2026.01
      Hu等3211.5413.6612.0516.19
      Chen等149.7515.1211.3713.77
      Chang等3110.568.389.3912.07
      Cho等1811.399.379.3017.78
      本文方法9.628.447.6211.20
    • Table 3. Average running time, deep learning model parameters, and computational complexity of different algorithms on a single Gaofen-2A PMS image

      View table
      View in Article

      Table 3. Average running time, deep learning model parameters, and computational complexity of different algorithms on a single Gaofen-2A PMS image

      方 法参数量(M)计算量(G)参考时间
      Pan等11NoneNone>48 h
      Hu等32NoneNone>24 h
      Chen等14NoneNone>24 h
      Chang等316.9187.9142 s
      Cho等1816.11615.755 s
      本文方法0.0840.6827 s
    • Table 4. Ablation experiments between modules of LSF algorithm

      View table
      View in Article

      Table 4. Ablation experiments between modules of LSF algorithm

      ARFF模块DSM模块频域损失函数PSNR/dBSSIM
      经典特征残差模块频域特征残差模块混合注意模块
      27.230.741 1
      27.520.743 4
      28.190.758 9
      28.230.761 3
      28.410.762 4
      28.520.763 1
    Tools

    Get Citation

    Copy Citation Text

    Hua WEI, Xiongxin TANG, Haitao NIE, Jing WANG, Hanxiang YANG, Yuanyuan XIA, Fanjiang XU. Degradation remote sensing image quality enhancement based on frequency-domain-spatial-domain hybrid attention[J]. Optics and Precision Engineering, 2024, 32(19): 2971

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 8, 2024

    Accepted: --

    Published Online: Jan. 9, 2025

    The Author Email: NIE Haitao (kelek2@126.com)

    DOI:10.37188/OPE.20243219.2971

    Topics