Acta Optica Sinica, Volume. 41, Issue 9, 0901001(2021)

Observation of Aircraft Wake Vortex Based on Coherent Doppler Lidar

Xiaoye Wang1, Songhua Wu1,2,3、*, Xiaoying Liu1, Jiaping Yin4, Weijun Pan5, and Xuan Wang5
Author Affiliations
  • 1Department of Marine Technology, College of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
  • 2Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
  • 3Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong 266100, China
  • 4Qingdao Leice Transient Technology Co., Ltd., Qingdao, Shandong 266100, China
  • 5Air Traffic Management Institute, Civil Aviation Flight University of China, Guanghan, Sichuan 618307, China
  • show less
    Figures & Tables(25)
    Location and layout of wake vortex observation. (a) MNA; (b) CSIA(landing stage); (c) CSIA(take-off stage)
    Flow chart of dynamic matching of PCDL scan fragments and flight information
    Principle diagram of wake vortex identification with radial velocity method
    Principle diagrams of wake vortex identification with spectral width method. (a) Distribution of spectrum intensity; (b) schematic of spectrum width calculation
    Examples of wake vortex identification by PCDL with different methods (Type A333, 20180910T001839). (a) Radial velocity method; (b) spectral width method
    Bimodal distributions of radial velocity and spectrum width (Type A320, 20180910T000220)
    Identification of vortex core horizontal position based on Dspeed,Dwidth and DR. (a)(b) 20180910T000138; (c)(d) 20180910T210542; (e)(f) 20180910T155221
    Radial velocity versus elevation angle (Type A333, 20180910T111901). (a) Left vortex core; (b) right vortex core
    Visualization of vortex core location (Type A333, 20180910T111901)
    Theoretical and measured distributions of tangential velocity. (a) Theoretical distributions of tangential velocity and initial circulation[37]; (b) distribution of tangential velocity measured by PCDL (Type A333, 20180827T153828)
    Comparison of retrieved circulation and B-H model fitting (Type A333, 20181015T081139). (a) Left vortex core; (b) right vortex core
    Radial velocity based on wake vortex evolution of airbus A333. (a) 20180907T234926; (b) 20180907T234940; (c) 20180907T234954; (d) 20180907T235007; (e) 20180907T235035; (f) 20180907T235021; (g) 20180907T235049; (h) 20180907T235103; (i) 20180907T235117
    Spectral width based on wake vortex evolution of airbus A333. (a) 20180907T234926; (b) 20180907T234940; (c) 20180907T234954; (d) 20180907T235007; (e) 20180907T235021; (f) 20180907T235035; (g) 20180907T235049; (h) 20180907T235103; (i) 20180907T235117
    Evolution of wake vortex core position and circulation of airbus A333(20180907T2349). (a) Vortex core position; (b) circulation
    Radial velocity based on wake vortex evolution of airbus B763. (a) 20180907T190201; (b) 20180907T190214; (c) 20180907T190229; (d) 20180907T190242; (e) 20180907T190256; (f) 20180907T190310; (g) 20180907T190324; (h) 20180907T190338
    Spectral width based on wake vortex evolution of airbus B763. (a) 20180907T190201; (b) 20180907T190214; (c) 20180907T190229; (d) 20180907T190242; (e) 20180907T190256; (f) 20180907T190310; (g) 20180907T190324;(h) 20180907T190338
    Evolution of wake vortex core position and circulation of airbus B763 (20180907T1902). (a) Wake vortex core position; (b) circulation
    Radial velocity based on wake vortex evolution of airbus A320. (a) 20180907T041914; (b) 20180907T041928; (c) 20180907T041942; (d) 20180907T041956; (e) 20180907T042010; (f) 20180907T042024
    Spectral width based on wake vortex evolution of airbus A320. (a) 20180907T041914; (b) 20180907T041928; (c) 20180907T041942; (d) 20180907T041956; (e) 20180907T042010; (f) 20180907T042024
    Evolution of wake vortex core position and circulation of airbus A320 (20180907T0419). (a) Wake vortex core position; (b) circulation
    Radial velocity and spectral width based on wake vortex evolution of airbus CRJ9. (a) 20180907T154531; (b) 20180907T154545; (c) 20180907T154559; (d) 20180907T154531; (e) 20180907T154545; (f) 20180907T154559
    • Table 1. Technical specifications of Wind3D 6000 PCDL

      View table

      Table 1. Technical specifications of Wind3D 6000 PCDL

      ParameterValue
      Wavelength /nm1550
      Pulse repetition rate /kHz10
      Pulse energy /μJ160
      Pulse width /ns100-200
      Power consumption /W<300
      Radial velocity measurement range /(m·s-1)-37.5-37.5
      Velocity measurement uncertainty /(m·s-1)≤0.1
      Measurement range /m40-6000
      Range resolution /m15-30
    • Table 2. Experimental information of wake vortex observation in Sichuan

      View table

      Table 2. Experimental information of wake vortex observation in Sichuan

      PhaseLocationDateScope
      Phase 1MNA20180806-20180821Observation of wake vortex during departing at MNA
      Phase 2CSIA20180825-20180920Observation of wake vortex during landing at CSIA
      Phase 3CSIA20180921-20181022Observation of wake vortex during departing at CSIA
    • Table 3. PCDL observation parameters and aircraft trajectory information of wake vortex observation experiment in Sichuan

      View table

      Table 3. PCDL observation parameters and aircraft trajectory information of wake vortex observation experiment in Sichuan

      Parameter typeParameterSpecification
      PCDL observation parametersAzimuthal angle φ /(°)260(MNA)90(CSIA)
      Elevation angle θ /(°)0-25(phase 1)0-10(phase 2)0-30(phase 3)
      Scanning rate ω /[(°)·s-1]1-2
      Duration of each radial measurement Δt /sAbout 0.2
      Duration of each scanning t /s10-15
      Angle resolution Δθ /(°)0.1-0.4
      Aircraft trajectory informationTake-off run SD /m1500-3400
      Landing run SL /m1200-2600
      Maximum rate of climbing VC /(m·s-1)About 23
      Maximum rate of descending VD /(m·s-1)About 15
      Approach speed V0 /(m·s-1)66.9-75.1
      Characteristic speed /(m·s-1)1.33-1.90
      Characteristic time t0 /s13.3-36.7
    • Table 4. Dynamic parameters and wake vortex characteristic parameters of different aircraft types

      View table

      Table 4. Dynamic parameters and wake vortex characteristic parameters of different aircraft types

      Aircraft typeWing span /mMaximum take-off weight /(103 kg)Maximum landing weight /(103 kg)Initial distance between right and left wake vortex cores /mInitial circulation /(m2·s-1)Dissipation time /s
      A33360.3023018542100/130111
      B76347.5715913635180/12097
      A32034.1686620170/18570
      CRJ923.2373314165/7728
    Tools

    Get Citation

    Copy Citation Text

    Xiaoye Wang, Songhua Wu, Xiaoying Liu, Jiaping Yin, Weijun Pan, Xuan Wang. Observation of Aircraft Wake Vortex Based on Coherent Doppler Lidar[J]. Acta Optica Sinica, 2021, 41(9): 0901001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Nov. 2, 2020

    Accepted: Dec. 2, 2020

    Published Online: May. 8, 2021

    The Author Email: Wu Songhua (wush@ouc.edu.cn)

    DOI:10.3788/AOS202141.0901001

    Topics