Acta Photonica Sinica, Volume. 51, Issue 10, 1019003(2022)
Numerical Study of Broadband Wavelength Conversion Based on InP/In1-xGaxAsyP1-y Strip-loaded Waveguide
[1] Ming MA, L R CHEN. Harnessing mode-selective nonlinear optics for on-chip multi-channel all-optical signal processing. APL Photonics, 1, 086104(2016).
[2] Lei GUAN, Zhouran WANG, Guohui YUAN et al. Characteritics of all-optical wavelength conversion based on quantum-dot semiconductor optical amplifier. Acta Photonica Sinica, 45, 1113002(2016).
[3] S M HENDRICKSON, A C FOSTER, R M CAMACHO et al. Integrated nonlinear photonics: emerging applications and ongoing challenges. Journal of the Optical Society of America B, 31, 3193-3203(2014).
[4] Zhiping ZHOU, Bing YIN, J MICHEL. On-chip light sources for silicon photonics. Light: Science & Applications, 4, e358(2015).
[5] M PU, L OTTAVIANO, E SEMENOVA et al. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).
[6] M R E LAMONT, B LUTHER-DAVIES, D Y CHOI et al. Supercontinuum generation in dispersion engineered highly nonlinear (γ=10 W-1m-1) As2S3 chalcogenide planar waveguide. Optics Express, 16, 14938-14944(2008).
[7] J TATEBAYASHI, S KAKO, J HO et al. Room-temperature lasing in a single nanowire with quantum dots. Nature Photonics, 9, 501-505(2015).
[8] Di LIANG, J E BOWERS. Recent progress in lasers on silicon. Nature photonics, 4, 511-517(2010).
[9] R CHEN, T T D TRAN, K W NG et al. Nanolasers grown on silicon. Nature Photonics, 5, 170-175(2011).
[10] F LUAN, M D PELUSI, M R E LAMONT et al. Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals. Optics Express, 17, 3514-3520(2009).
[11] M GALILI, Jing XU, H C H MULVAD et al. Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing. Optics Express, 17, 2182-2187(2009).
[12] G A SIVILOGLOU, S SUNTSOV, R EI-GANAINY et al. Enhanced third-order nonlinear effects in optical AlGaAs nanowires. Optics Express, 14, 9377-9384(2006).
[13] D DUCHESNE, R MORANDOTTI, G A SIVILOGLOU et al. Nonlinear photonics in AlGaAs photonics nanowires: self phase and cross phase modulation(2007).
[14] W M J GREEN, R K LEE, G A DEROSE et al. Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control. Optics Express, 13, 1651-1659(2005).
[15] V I TOLSTIKHIN. Single-mode vertical integration of active devices within passive waveguides of InP-based planar WDM components(2002).
[16] V I TOLSTIKHIN, A DENSMORE, K PIMENOV et al. Monolithically integrated optical channel monitor for DWDM transmission systems. Journal of Lightwave Technology, 22, 146(2004).
[17] K DOLGALEVA, W C NG, Li QIAN et al. Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion. Optics Express, 19, 12440-12455(2011).
[18] K DOLGALEVA, W C NG, Li QIAN et al. Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides. Optics Letters, 35, 4093-4095(2010).
[19] Delong CUI, S M HUBBARD, D PAVLIDIS et al. Impact of doping and MOCVD conditions on minority carrier lifetime of zinc-and carbon-doped InGaAs and its applications to zinc-and carbon-doped InP/InGaAs heterostructure bipolar transistors. Semiconductor Science and Technology, 17, 503(2002).
[20] K DOLGALEVA, W C NG, Li QIAN et al. Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion. Optics Express, 19, 12440-12455(2011).
[21] P APIRATIKUL, J J WATHEN, G A PORKOLAB et al. Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides. Optics Express, 22, 26814-26824(2014).
[22] S SAEIDI, K M AWAN, L SIRBU et al. Nonlinear photonics on-a-chip in Ⅲ-Ⅴ semiconductors: quest for promising material candidates. Applied Optics, 56, 5532-5541(2017).
[23] S SAEIDI, P RASEKH, K M AWAN et al. Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides. Optical Materials, 84, 524-530(2018).
[24] Jin WEN, Kang LI, Yongkang GONG et al. Numerical investigation of on-chip wavelength conversion based on InP/In1-xGaxAsyP1-y semiconductor waveguide platforms. Optics Communications, 473, 125921(2020).
[25] B JENSEN, A TORABI. Refractive index of quaternary In1-xGaxAsyP1-ylattice matched to InP. Journal of Applied Physics, 54, 3623-3625(1983).
Get Citation
Copy Citation Text
Jin WEN, Chenyao HE, Weijun QIN, Wei SUN, Bozhi LIANG, Keyu XIONG, Hui ZHANG, Zhengwei WU, Huimin YU, Qian WANG. Numerical Study of Broadband Wavelength Conversion Based on InP/In1-xGaxAsyP1-y Strip-loaded Waveguide[J]. Acta Photonica Sinica, 2022, 51(10): 1019003
Category:
Received: Aug. 15, 2022
Accepted: Oct. 20, 2022
Published Online: Nov. 30, 2022
The Author Email: WEN Jin (wenjin@xsyu.edu.cn)