Acta Optica Sinica, Volume. 42, Issue 17, 1714004(2022)

Review of Research Progress on Damage Characteristics of Fused Silica Optics under Ultraviolet Pulsed Laser Irradiation

Liming Yang*, Jin Huang, Hongjie Liu, Fengrui Wang, Feng Geng, Laixi Sun, Wei Han, Lei Ding, Wei Liao, and Xiaodong Jiang
Author Affiliations
  • Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • show less
    References(72)

    [1] Shang X C, Cao X K, Zhang R Z et al. Influence of laser wavelength and pulse duration threshold on laser-induced optical damage[J]. High Power Laser and Particle Beams, 20, 1071-1075(2008).

    [2] Huang J, Liu H J, Wang F R et al. Influence of bulk defects on bulk damage performance of fused silica optics at 355 nm nanosecond pulse laser[J]. Optics Express, 25, 33416-33428(2017).

    [3] de Yoreo J J, Burnham A K, Whitman P K. Developing KH2PO4 and KD2PO4 crystals for the world's most power laser[J]. International Materials Reviews, 47, 113-152(2002).

    [4] Negres R A, Norton M A, Cross D A et al. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation[J]. Optics Express, 18, 19966-19976(2010).

    [5] Liao Z M, Abdulla G M, Negres R A et al. Predictive modeling techniques for nanosecond-laser damage growth in fused silica optics[J]. Optics Express, 20, 15569-15579(2012).

    [6] Carr C W, Matthews M J, Bude J D et al. The effect of laser pulse duration on laser-induced damage in KDP and SiO2[J]. Proceedings of SPIE, 6403, 64030K(2007).

    [7] Negres R A, Cross D A, Liao Z M et al. Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation[J]. Optics Express, 22, 3824-3844(2014).

    [8] Wong J, Ferriera J L, Lindsey E F et al. Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses[J]. Journal of Non-Crystalline Solids, 352, 255-272(2006).

    [9] Demos S G, Staggs M. Characterization of laser induced damage sites in optical components[J]. Optics Express, 10, 1444-1450(2002).

    [10] Kubota A, Caturla M J, Stolken J et al. Densification of fused silica due to shock waves and its implications for 351 nm laser induced damage[J]. Optics Express, 8, 611-616(2001).

    [11] Ju X. Experimental research on the dynamics of ultraviolet laser-induced damage[J]. Scientia Sinica (Physica, 51, 38-52(2021).

    [12] Norton M A, Donohue E E, Feit M D et al. Growth of laser damage on the input surface of SiO2 at 351 nm[J]. Proceedings of SPIE, 6403, 64030L(2007).

    [13] Raman R N, Elhadj S, Negres R A et al. Characterization of ejected fused silica particles following surface breakdown with nanosecond pulses[J]. Optics Express, 20, 27708-27724(2012).

    [14] Raman R N, Negres R A, Demos S G. Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses[J]. Applied Physics Letters, 98, 051901(2011).

    [15] Raman R N, Negres R A, Demos S G. Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example[J]. Optical Engineering, 50, 013602(2011).

    [16] Zhu C Y, Liang L X, Peng G et al. Explosion plume on the exit surface of fused silica during UV laser-induced damage[J]. Results in Physics, 32, 105094(2022).

    [17] Demos S G, Raman R N, Negres R A. Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses[J]. Optics Express, 21, 4875-4888(2013).

    [18] Miller P E, Suratwala T I, Bude J D et al. Laser damage precursors in fused silica[J]. Proceedings of SPIE, 7504, 75040X(2009).

    [19] Feit M D, Rubenchik A M. Influence of subsurface cracks on laser-induced surface damage[J]. Proceedings of SPIE, 5273, 264-272(2004).

    [20] Neauport J, Cormont P, Lamaignère L et al. Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm[J]. Optics Communications, 281, 3802-3805(2008).

    [21] Liu H J, Wang F R, Huang J et al. Experimental study of 355 nm laser damage ignited by Fe and Ce impurities on fused silica surface[J]. Optical Materials, 95, 109231(2019).

    [22] Neauport J, Lamaignere L, Bercegol H et al. Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm[J]. Optics Express, 13, 10163-10171(2005).

    [23] Liu H J, Huang J, Wang F R et al. Subsurface defects of fused silica optics and laser induced damage at 351 nm[J]. Optics Express, 21, 12204-12217(2013).

    [24] Suratwala T, Wong L, Miller P et al. Sub-surface mechanical damage distributions during grinding of fused silica[J]. Journal of Non-Crystalline Solids, 352, 5601-5617(2006).

    [25] Génin F Y, Salleo A, Pistor T V et al. Role of light intensification by cracks in optical breakdown on surfaces[J]. Journal of the Optical Society of America A, 18, 2607-2616(2001).

    [26] Wang F R, Huang J, Liu H J et al. Laser induced rear-surface-crack damage properties of fused silica etched with HF solution[J]. Acta Physica Sinica, 59, 5122-5127(2010).

    [27] Xu S Z, Zu X T, Jiang X D et al. The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266, 2936-2940(2008).

    [28] Laurence T A, Bude J D, Shen N et al. Metallic-like photoluminescence and absorption in fused silica surface flaws[J]. Applied Physics Letters, 94, 151114(2009).

    [29] Hopper R W, Uhlmann D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 41, 4023-4037(1970).

    [30] Papernov S, Schmid A W, Oliver J B et al. Damage thresholds and morphology of the front- and back-irradiated SiO2 thin films containing gold nanoparticles as artificial absorbing defects[J]. Proceedings of SPIE, 6720, 67200G(2007).

    [31] Sadigh B, Erhart P, Åberg D et al. First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass[J]. Physical Review Letters, 106, 027401(2011).

    [32] Bude J, Miller P E, Shen N et al. Silica laser damage mechanisms, precursors and their mitigation[J]. Proceedings of SPIE, 9237, 92370S(2014).

    [33] Saito K, Ikushima A J. Absorption edge in silica glass[J]. Physical Review B, 62, 8584-8587(2000).

    [34] Demos S G, Negres R A. Time-resolved imaging of material response during laser-induced bulk damage in SiO2[J]. Proceedings of SPIE, 7132, 71320Q(2008).

    [35] Hamza A V, Siekhaus W J, Rubenchik A M et al. Engineered defects for investigation of laser-induced damage of fused silica at 355 nm[J]. Proceedings of SPIE, 4679, 96-107(2002).

    [36] Wong L, Suratwala T, Feit M D et al. The effect of HF/NH4F etching on the morphology of surface fractures on fused silica[J]. Journal of Non-Crystalline Solids, 355, 797-810(2009).

    [37] Suratwala T, Steele R, Feit M D et al. Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing[J]. Journal of Non-Crystalline Solids, 354, 2023-2037(2008).

    [38] Basim G B, Adler J J, Mahajan U et al. Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects[J]. Journal of the Electrochemical Society, 147, 3523-3528(2000).

    [39] Menapace J A. Developing magnetorheological finishing (MRF) technology for the manufacture of large-aperture optics in megajoule class laser systems[J]. Proceedings of SPIE, 7842, 78421W(2010).

    [40] Menapace J A, Penetrante B, Golini D et al. Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics[J]. Proceedings of SPIE, 4679, 1-13(2001).

    [41] Jacobs S D, Golini D, Hsu Y et al. Magnetorheological finishing: a deterministic process for optics manufacturing[J]. Proceedings of SPIE, 2576, 372-382(1995).

    [42] Mori Y, Yamauchi K, Endo K. Elastic emission machining[J]. Precision Engineering, 9, 123-128(1987).

    [43] Kanaoka M, Liu C, Nomura K et al. Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics[J]. Journal of Vacuum Science & Technology B, 25, 2110-2113(2007).

    [44] Drueding T W, Fawcett S C, Wilson S R et al. Ion beam figuring of small optical components[J]. Optical Engineering, 34, 3565-3571(1995).

    [45] Arnold T, Böhm G, Fechner R et al. Ultra-precision surface finishing by ion beam and plasma jet techniques: status and outlook[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 616, 147-156(2010).

    [46] Liao W L, Dai Y F, Liu Z Z et al. Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering[J]. Optics Express, 24, 4247-4257(2016).

    [47] Booij S M, van Brug H H, Braat J J M et al. Nanometer deep shaping with fluid jet polishing[J]. Optical Engineering, 41, 1926-1931(2002).

    [48] Luo Y C, Li X L, Zhang Y et al. Analysis of flow field characteristics in fluid jet polishing[J]. Optical Technique, 40, 376-380(2014).

    [49] Yang P, Peng W Q, Li S Y et al. Flow field simulation and experimental of nanoparticle jet ultra-smooth polishing for fused silica workpiece[J]. Aviation Precision Manufacturing Technology, 52, 4-9(2016).

    [50] Suratwala T I, Miller P E, Bude J D et al. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. Journal of the American Ceramic Society, 94, 416-428(2011).

    [51] Feit M D, Suratwala T I, Wong L L et al. Modeling wet chemical etching of surface flaws on fused silica[J]. Proceedings of SPIE, 7504, 75040L(2009).

    [52] Ye X, Huang J, Liu H J et al. Advanced mitigation process (AMP) for improving laser damage threshold of fused silica optics[J]. Scientific Reports, 6, 31111(2016).

    [53] Li Y, Yan H W, Yang K et al. Improvement of laser damage thresholds of fused silica by ultrasonic-assisted hydrofluoric acid etching[J]. Chinese Physics B, 26, 118104(2017).

    [54] Bude J, Miller P, Baxamusa S et al. High fluence laser damage precursors and their mitigation in fused silica[J]. Optics Express, 22, 5839-5851(2014).

    [55] Baxamusa S, Miller P E, Wong L et al. Mitigation of organic laser damage precursors from chemical processing of fused silica[J]. Optics Express, 22, 29568-29577(2014).

    [56] Hu G H, Zhao Y A, Liu X F et al. Combining wet etching and real-time damage event imaging to reveal the most dangerous laser damage initiator in fused silica[J]. Optics Letters, 38, 2632-2635(2013).

    [57] Ye H, Li Y G, Zhang Q H et al. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers[J]. Applied Optics, 55, 3017-3025(2016).

    [58] Sun L X, Liu H J, Huang J et al. Reaction ion etching process for improving laser damage resistance of fused silica optical surface[J]. Optics Express, 24, 199-211(2016).

    [59] Sun L X, Huang J, Liu H J et al. Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces[J]. Optics Letters, 41, 4464-4467(2016).

    [60] Sun L X, Shao T, Xu J F et al. Traceless mitigation of laser damage precursors on a fused silica surface by combining reactive ion beam etching with dynamic chemical etching[J]. RSC Advances, 8, 32417-32422(2018).

    [61] Sun L X, Shao T, Zhou X D et al. Understanding the effect of HF-based wet shallow etching on optical performance of reactive-ion-etched fused silica optics[J]. RSC Advances, 11, 29323-29332(2021).

    [62] Shao T, Shi Z H, Sun L X et al. Role of each step in the combined treatment of reactive ion etching and dynamic chemical etching for improving the laser-induced damage resistance of fused silica[J]. Optics Express, 29, 12365-12380(2021).

    [63] Adams J J, Bolourchi M, Bude J D. Results of applying a non-evaporative mitigation technique to laser-initiated surface damage on fused-silica[J]. Proceedings of SPIE, 7842, 784223(2010).

    [64] Chen J, Dong J T, Wu Z L. Development of a "turn-key" system for weak absorption measurement and analysis[J]. Proceedings of SPIE, 8786, 87861M(2013).

    [65] Loriette V, Boccara C. Absorption of low-loss optical materials measured at 1064 nm by a position-modulated collinear photothermal detection technique[J]. Applied Optics, 42, 649-656(2003).

    [66] Huang J, Wang F R, Liu H J et al. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics[J]. Scientific Reports, 7, 16239(2017).

    [67] Huang J, Wang F R, Li W H et al. Assessing the UV-pulse-laser-induced damage density of fused silica optics using photo-thermal absorption distribution probability curves[J]. Optics Letters, 47, 653-656(2022).

    [68] Demos S G, Staggs M. Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage[J]. Applied Optics, 41, 1977-1983(2002).

    [69] Ciapponi A, Palmier S, Wagner F et al. Laser induced fluorescence as a tool for the study of laser damage precursors in transparent materials[J]. Proceedings of SPIE, 6998, 69981E(2008).

    [70] Liu H J, Wang F R, Geng F et al. Nondestructive detection of optics subsurface defects by fluorescence image technique[J]. Optics and Precision Engineering, 28, 50-59(2020).

    [71] Lamaignère L, Balas M, Courchinoux R et al. Parametric study of laser-induced surface damage density measurements: toward reproducibility[J]. Journal of Applied Physics, 107, 023105(2010).

    [72] Lamaignère L, Bouillet S, Courchinoux R et al. An accurate, repeatable, and well characterized measurement of laser damage density of optical materials[J]. Review of Scientific Instruments, 78, 103105(2007).

    Tools

    Get Citation

    Copy Citation Text

    Liming Yang, Jin Huang, Hongjie Liu, Fengrui Wang, Feng Geng, Laixi Sun, Wei Han, Lei Ding, Wei Liao, Xiaodong Jiang. Review of Research Progress on Damage Characteristics of Fused Silica Optics under Ultraviolet Pulsed Laser Irradiation[J]. Acta Optica Sinica, 2022, 42(17): 1714004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Jun. 16, 2022

    Accepted: Aug. 8, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Yang Liming (lmyang@vip.sina.com)

    DOI:10.3788/AOS202242.1714004

    Topics