Opto-Electronic Advances, Volume. 6, Issue 9, 220201(2023)
Deep-ultraviolet photonics for the disinfection of SARS-CoV-2 and its variants (Delta and Omicron) in the cryogenic environment
[1] WJ Guan, ZY Ni, Y Hu, WH Liang, CQ Ou et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 1708-1720(2020).
[2] M Douglas, SV Katikireddi, M Taulbut, M McKee, G McCartney. Mitigating the wider health effects of covid-19 pandemic response. BMJ, m1557(2020).
[3] DD Tian, YH Sun, JM Zhou, Q Ye. The global epidemic of the SARS-CoV-2 delta variant, key spike mutations and immune escape. Front Immunol, 751778(2021).
[4] SSA Karim, QA Karim. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet, 2126-2128(2021).
[5] G Douaud, S Lee, F Alfaro-Almagro, C Arthofer, CY Wang et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature, 697-707(2022).
[6] N Goswami, YR He, YH Deng, C Oh, N Sobh et al. Label-free SARS-CoV-2 detection and classification using phase imaging with computational specificity. Light Sci Appl, 176(2021).
[7] M Raeiszadeh, B Adeli. A critical review on ultraviolet disinfection systems against COVID-19 outbreak: applicability, validation, and safety considerations. ACS Photonics, 2941-2951(2020).
[8] G Berry, A Parsons, M Morgan, J Rickert, H Cho. A review of methods to reduce the probability of the airborne spread of COVID-19 in ventilation systems and enclosed spaces. Environ Res, 111765(2022).
[9] M Bormann, M Alt, L Schipper, Sand L van de, M Otte et al. Disinfection of SARS-CoV-2 contaminated surfaces of personal items with UVC-LED disinfection boxes. Viruses, 598(2021).
[11] Y Aoyagi, M Takeuchi, K Yoshida, M Kurouchi, N Yasui et al. Inactivation of bacterial viruses in water using deep ultraviolet semiconductor light-emitting diode. J Environ Eng, 1215-1218(2011).
[12] T Minamikawa, T Koma, A Suzuki, K Nagamatsu, T Yasui et al. Inactivation of SARS-CoV-2 by deep ultraviolet light emitting diode: a review. Jpn J Appl Phys, 090501(2021).
[13] J Bolton, C Cotton. Mechanism of UV disinfection. In Bolton JR, Cotton CA. The Ultraviolet Disinfection Handbook(2008).
[14] K Oguma, H Katayama, S Ohgaki. Photoreactivation of Escherichia coli after low- or medium-pressure UV disinfection determined by an endonuclease sensitive site assay. Appl Environ Microbiol, 6029-6035(2002).
[15] VK Sharma, HV Demir. Bright future of deep-ultraviolet photonics: emerging UVC chip-scale light-source technology platforms, benchmarking, challenges, and outlook for UV disinfection. ACS Photonics, 1513-1521(2022).
[16] CS Heilingloh, UW Aufderhorst, L Schipper, U Dittmer, O Witzke et al. Susceptibility of SARS-CoV-2 to UV irradiation. Am J Infect Control, 1273-1275(2020).
[17] M Biasin, A Bianco, G Pareschi, A Cavalleri, C Cavatorta et al. UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Sci Rep, 6260(2021).
[18] SF Liu, W Luo, D Li, Y Yuan, W Tong et al. Sec‐eliminating the SARS‐CoV‐2 by AlGaN based high power deep ultraviolet light source. Adv Funct Mater, 2008452(2021).
[19] CP Sabino, FP Sellera, DF Sales-Medina, RRG Machado, EL Durigon et al. UV-C (254 nm) lethal doses for SARS-CoV-2. Photodiagnosis Photodyn Ther, 101995(2020).
[21] TF Yap, Z Liu, RA Shveda, DJ Preston. A predictive model of the temperature-dependent inactivation of coronaviruses. Appl Phys Lett, 060601(2020).
[22] YH Chi, QX Wang, GS Chen, SL Zheng. The long-term presence of SARS-CoV-2 on cold-chain food packaging surfaces indicates a new COVID-19 winter outbreak: a mini review. Front Public Health, 650493(2021).
[23] TD Cutler, C Wang, SJ Hoff, JJ Zimmerman. Effect of temperature and relative humidity on ultraviolet (UV254) inactivation of airborne porcine respiratory and reproductive syndrome virus. Vet Microbiol, 47-52(2012).
[24] JY Su, J Zheng, W Huang, YL Zhang, CR Lv et al. PIKfyve inhibitors against SARS-CoV-2 and its variants including Omicron. Sig Transduct Target Ther, 167(2022).
[25] F Wu, S Zhao, B Yu, YM Chen, W Wang et al. A new coronavirus associated with human respiratory disease in China. Nature, 265-269(2020).
[30] JC Li, N Gao, DJ Cai, W Lin, K Huang et al. Multiple fields manipulation on nitride material structures in ultraviolet light-emitting diodes. Light Sci Appl, 129(2021).
[31] ZB Zhong, XL Zheng, JC Li, JJ Zheng, YS Zang et al. Fabrication of high-voltage flip chip deep ultraviolet light-emitting diodes using an inclined sidewalls structure. Phys Status Solidi A, 1900059(2019).
[32] Y Gerchman, H Mamane, N Friedman, M Mandelboim. UV-LED disinfection of coronavirus: wavelength effect. J Photochem Photobiol B:Biol, 112044(2020).
[33] M Kojima, K Mawatari, T Emoto, R Nishisaka-Nonaka, TKN Bui et al. Irradiation by a combination of different peak-wavelength ultraviolet-light emitting diodes enhances the inactivation of influenza a viruses. Microorganisms, 1014(2020).
[34] K Krishnamurthy, A Demirci, J Irudayaraj. Inactivation of Staphylococcus aureus by pulsed UV-light sterilization. J Food Prot, 1027-1030(2004).
[35] K Krishnamurthy, A Demirci, JM Irudayaraj. Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-light treatment system. J Food Sci, M233-M239(2007).
[36] C Kaplan. The heat inactivation of vaccinia virus. J Gen Microbiol, 58-63(1958).
[38] WC Dewey. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia, 457-483(1994).
[39] A Becskei, S Rahaman. The life and death of RNA across temperatures. Comput Struct Biotechnol J, 4325-4336(2022).
[40] L Song, SR Farrah, RH Baney. Bacterial inactivation kinetics of dialdehyde starch aqueous suspension. Polymers, 1902-1910(2011).
[41] G Cebrián, S Condón, P Mañas. Physiology of the inactivation of vegetative bacteria by thermal treatments: mode of action, influence of environmental factors and inactivation kinetics. Foods, 107(2017).
[42] BF Severin, MT Suidan, RS Engelbrecht. Effect of temperature on ultraviolet light disinfection. Environ Sci Technol, 717-721(1983).
[43] M Sadraeian, L Zhang, F Aavani, E Biazar, DY Jin. Viral inactivation by light. eLight, 18(2022).
[44] SS Li, M Paulsson, LO Björn. Temperature-dependent formation and photorepair of DNA damage induced by UV-B radiation in suspension-cultured tobacco cells. J Photochem Photobiol B:Biol, 67-72(2002).
[45] I González-Ramírez, D Roca-Sanjuán, T Climent, JJ Serrano-Pérez, M Merchán et al. On the photoproduction of DNA/RNA cyclobutane pyrimidine dimers. Theor Chem Acc, 705-711(2011).
[46] NC Rockey, JB Henderson, K Chin, L Raskin, KR Wigginton. Predictive modeling of virus inactivation by UV. Environ Sci Technol, 3322-3332(2021).
[47] SV Kartalopoulos. Introduction to DWDM Technology: Data in A Rainbow(1999).
[48] Y Barak, O Cohen-Fix, Z Livneh. Deamination of cytosine-containing pyrimidine photodimers in UV-irradiated DNA. J Biol Chem, 24174-24179(1995).
[49] S Ricciardi, AM Guarino, L Giaquinto, EV Polishchuk, M Santoro et al. The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. Nature, 761-768(2022).
[50] T Minamikawa, T Koma, A Suzuki, T Mizuno, K Nagamatsu et al. Quantitative evaluation of SARS-CoV-2 inactivation using a deep ultraviolet light-emitting diode. Sci Rep, 5070(2021).
[51] M Buonanno, D Welch, I Shuryak, DJ Brenner. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci Rep, 10285(2020).
[52] LW Chen, MH Hong. Functional nonlinear optical nanoparticles synthesized by laser ablation. Opto-Electron Sci, 210007(2022).
[53] WH Yang, JC Li, Y Zhang, PK Huang, TC Lu et al. High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability. Sci Rep, 5166(2014).
[54] YZ Qian, ZY Yang, YH Huang, KH Lin, ST Wu. Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays. Opto-Electron Sci, 220021(2022).
Get Citation
Copy Citation Text
Wenyu Kang, Jing Zheng, Jiaxin Huang, Lina Jiang, Qingna Wang, Zhinan Guo, Jun Yin, Xianming Deng, Ye Wang, Junyong Kang. Deep-ultraviolet photonics for the disinfection of SARS-CoV-2 and its variants (Delta and Omicron) in the cryogenic environment[J]. Opto-Electronic Advances, 2023, 6(9): 220201
Category: Research Articles
Received: Dec. 14, 2022
Accepted: Mar. 22, 2023
Published Online: Nov. 15, 2023
The Author Email: