Opto-Electronic Engineering, Volume. 47, Issue 7, 190278(2020)
Visual tracking algorithm based on robust PCA
[2] [2] Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010.
[3] [3] Henriques J F, Caseiro R, Martins P, et al. Exploiting the circu-lant structure of tracking-by-detection with ker-nels[M]//Fitzgibbon A, Lazebnik S, Perona P, et al. Computer Vision – ECCV 2012. Berlin Heidelberg: Springer, 2012.
[4] [4] Danelljan M, Khan F S, Felsberg M, et al. Adaptive color attributes for real-time visual tracking[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014.
[5] [5] Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pat-tern Analysis and Machine Intelligence, 2015, 37(3): 583–596.
[6] [6] Liu X, Chen Y. Target tracking based on adaptive fusion of mul-ti-feature[J]. Opto-Electronic Engineering, 2016, 43(3): 58–65.
[7] [7] Li Y, Zhu J K. A scale adaptive kernel correlation filter tracker with feature integration[C]//Proceedings of European Confe-rence on Computer Vision, Zurich, Switzerland, 2014.
[8] [8] Bertinetto L, Valmadre J, Golodetz S, et al. Staple: complemen-tary learners for real-time tracking[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016.
[9] [9] Danelljan M, Bhat G, Khan F S, et al. ECO: efficient convolution operators for tracking[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 6931–6939.
[10] [10] Song Y B, Ma C, Gong L J, et al. Crest: convolutional residual learning for visual tracking[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2574–2583.
[11] [11] Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 4293–4302.
[12] [12] Bhat G, Johnander J, Danelljan M, et al. Unveiling the power of deep tracking[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018.
[13] [13] Luke.ic A, Vojir T, Cehovin Zajc L, et al. Discriminative correla-tion filter with channel and spatial reliability[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Rec-ognition, Honolulu, HI, USA, 2017: 4847–4856.
[14] [14] Danelljan M, H.ger G, Khan F S, et al. Learning spatially regu-larized correlation filters for visual tracking[C]//Proceedings of 2015 IEEE International Conference on Computer Vision, San-tiago, Chile, 2015: 4310–4318.
[15] [15] Abdi H, Williams L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433–459.
[16] [16] Zhang J M, Ma S G, Sclaroff S. MEEM: robust tracking via mul-tiple experts using entropy minimization[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Swit-zerland, 2014.
[17] [17] van de Weijer J, Schmid C, Verbeek J. Learning color names from real-world images[C]//Proceedings of 2007 IEEE Confe-rence on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007: 1–8.
[18] [18] van de Weijer J, Schmid C, Verbeek J, et al. Learning color names for real-world applications[J]. IEEE Transactions on Im-age Processing, 2009, 18(7): 1512–1523.
[19] [19] Shlens J. A tutorial on principal component analysis[Z]. arXiv: 1404.1100[cs:CV], 2014.
[20] [20] Bi D Y, Ku T, Zha YF, et al. Scale-adaptive object tracking based on color names histogram[J]. Journal of Electronics & Informa-tion Technology, 2016, 38(5): 1099–1106.
[21] [21] Shahid N, Perraudin N, Kalofolias V, et al. Fast robust PCA on graphs[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(4): 740–756.
[22] [22] Netrapalli P, Niranjan U N, Sanghavi S, et al. Non-convex robust PCA[C]//Proceedings of Advances in Neural Information Processing Systems, Montreal, Quebec, Canada, 2014: 1107–1115.
[23] [23] Xu H, Caramanis C, Sanghavi S. Robust PCA via outlier pur-suit[C]//Proceedings of Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2010: 2496–2504.
[24] [24] Wu Y, Lim J, Yang M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848.
[25] [25] Zhang K H, Zhang L, Yang M H. Real-time compressive track-ing[C]//Proceedings of the 12th European Conference on Com-puter Vision, Florence, Italy, 2012: 864–877.
Get Citation
Copy Citation Text
Yue Chenchen, Hou Zhiqiang, Yu Wangsheng, Pu Lei, Ma Sugang. Visual tracking algorithm based on robust PCA[J]. Opto-Electronic Engineering, 2020, 47(7): 190278
Category: Article
Received: May. 27, 2019
Accepted: --
Published Online: Oct. 28, 2020
The Author Email: Chenchen Yue (felicitychen1023@163.com)