Matter and Radiation at Extremes, Volume. 8, Issue 2, 024402(2023)
Nonlinear branched flow of intense laser light in randomly uneven media
[1] R.Fleischmann, E. J.Heller, T.Kramer. Branched flow. Phys. Today, 74, 44(2021).
[2] R.Fleischmann, A. C.Gossard, E. J.Heller, B. J.LeRoy, K. D.Maranowski, S. E. J.Shaw, M. A.Topinka, R. M.Westervelt. Coherent branched flow in a two-dimensional electron gas. Nature, 410, 183(2001).
[3] K. E.Aidala, A. C.Gossard, M. P.Hanson, E. J.Heller, T.Kramer, R. E.Parrott, R. M.Westervelt. Imaging magnetic focusing of coherent electron waves. Nat. Phys., 3, 464(2007).
[4] D.Goldhaber-Gordon, M. P.Jura, L. N.Pfeiffer, H.Shtrikman, M. A.Topinka, L.Urban, K. W.West, A.Yazdani. Unexpected features of branched flow through high-mobility two-dimensional electron gases. Nat. Phys., 3, 841(2007).
[5] R.Fleischmann, T.Geisel, D.Maryenko, J. J.Metzger, F.Ospald, J. H.Smet, V.Umansky, K.von Klitzing. How branching can change the conductance of ballistic semiconductor devices. Phys. Rev. B, 85, 195329(2012).
[6] E. J.Heller, B.Liu. Stability of branched flow from a quantum point contact. Phys. Rev. Lett., 111, 236804(2013).
[7] M. V.Berry. Tsunami asymptotics. New J. Phys., 7, 129(2005).
[8] M. V.Berry. Focused tsunami waves. Proc. R. Soc. A, 463, 3055(2007).
[9] B.Aydin, U.Kano?lu, C.Moore, M.Spillane, T. S.Stefanakis, C. E.Synolakis, V. V.Titov, H.Zhou. Focusing of long waves with finite crest over constant depth. Proc. R. Soc. A, 469, 20130015(2013).
[10] H.Degueldre, R.Fleischmann, T.Geisel, J. J.Metzger. Random focusing of tsunami waves. Nat. Phys., 12, 259(2016).
[11] R.Fleischmann, G.Green. Branched flow and caustics in nonlinear waves. New J. Phys., 21, 083020(2019).
[12] J. M.Cordes, R. V. E.Lovelace, A.Pidwerbetsky. Refractive and diffractive scattering in the interstellar medium. Astrophys. J., 310, 737(1986).
[13] A.Pidwerbetsky. Simulation and analysis of wave propagation through random media(1988).
[14] D. R.Stinebring. Scintillation arcs: Probing turbulence and structure in the ISM. Chin. J. Astron. Astrophys., 6, 204(2006).
[15] S.Barkhofen, R.Fleischmann, U.Kuhl, J. J.Metzger, H.-J.St?ckmann. Experimental observation of a fundamental length scale of waves in random media. Phys. Rev. Lett., 111, 183902(2013).
[16] N. J.Derr, D. C.Fronk, A.Mahadevan, L.Mahadevan, C. H.Rycroft, C. A.Weber. Flow-driven branching in a frangible porous medium. Phys. Rev. Lett., 125, 158002(2020).
[17] M. A.Bandres, A.Patsyk, M.Segev, U.Sivan. Observation of branched flow of light. Nature, 583, 60(2020).
[18] A.Patsyk, M.Segev, Y.Sharabi, U.Sivan. Incoherent branched flow of light. Phys. Rev. X, 12, 021007(2022).
[19] P.Ambichl, A.Brandst?tter, A.Girschik, S.Rotter. Shaping the branched flow of light through disordered media. Proc. Natl. Acad. Sci. U. S. A., 116, 13260(2019).
[20] M.Mattheakis, G. P.Tsironis. Extreme waves and branching flows in optical media. Quodons in Mica, 425(2015).
[21] L.Kaplan. Statistics of branched flow in a weak correlated random potential. Phys. Rev. Lett., 89, 184103(2002).
[22] R.Fleischmann, T.Geisel, J. J.Metzger. Universal statistics of branched flows. Phys. Rev. Lett., 105, 020601(2010).
[23] R.Fleischmann, T.Geisel, J. J.Metzger. Statistics of extreme waves in random media. Phys. Rev. Lett., 112, 203903(2014).
[24] P.Ray, H. E.Stanley, A.Vespignani, S.Zapperi. First-order transition in the breakdown of disordered media. Phys. Rev. Lett., 78, 1408(1997).
[25] G.Mourou, D.Strickland. Compression of amplified chirped optical pulses. Opt. Commun., 55, 447(1985).
[26] P.Gibbon. Short Pulse Laser Interactions with Matter: An Introduction(2005).
[27] S.Augst, S. L.Chin, J. H.Eberly, D. D.Meyerhofer, D.Strickland. Tunneling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett., 63, 2212(1989).
[28] I. M.Elewa, E. S.Gadelmawla, M. M.Koura, T. M. A.Maksoud, H. H.Soliman. Roughness parameters. J. Mater. Sci., 123, 133(2002).
[29] T. D.Arber, A. R.Bell, K.Bennett, C. S.Brady, R. G.Evans, P.Gillies, A.Lawrence-Douglas, M. G.Ramsay, C. P.Ridgers, H.Schmitz, N. J.Sircombe. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion, 57, 113001(2015).
[30] C. S. A.Musgrave, K.Nagai, W.Nazarov. A review of low density porous materials used in laser plasma experiments. Phys. Plasmas, 25, 030501(2018).
[31] M. A.Belyaev, R. L.Berger, J.Biener, O. S.Jones, G. E.Kemp, S.Langer, D. A.Mariscal, J. L.Milovich, J. S.Oakdale, S.Sepke, M.Stadermann, P. A.Sterne. Simulation studies of the interaction of laser radiation with additively manufactured foams. Plasma Phys. Controlled Fusion, 63, 055009(2021).
[32] B. R.Lee, C. H.Nam, Y. J.Rhee, P. K.Singh. Spatiotemporal characteristics of high-density gas jet and absolute determination of size and density of gas clusters. Sci. Rep., 10, 12973(2020).
[33] N. J.Fisch, Q.Jia, K.Qu. Optical phase conjugation in backward Raman amplification. Opt. Lett., 45, 5254(2020).
[34] N. N.Rao, P.Shukla, N. L.Tsintsadze, M. Y.Yu. Relativistic nonlinear effects in plasmas. Phys. Rep., 138, 1(1986).
[35] P.Guzdar, Y. C.Lee, E.Ott, G.-Z.Sun. Self-focusing of short intense pulses in plasmas. Phys. Fluids, 30, 526(1987).
[36] A. B.Borisov, A. V.Borovskiy, K.Boyer, V. V.Korobkin, T. S.Luk, A. M.Prokhorov, C. K.Rhodes, O. B.Shiryaev, J. C.Solem. Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A, 45, 5830(1992).
[37] A. B.Borisov, K.Boyer, A.Mcpherson, C. K.Rhodes, O. B.Shiryaev. Stability analysis of relativistic and charge-displacement self-channelling of intense laser pulses in underdense plasmas. Plasma Phys. Controlled Fusion, 37, 569(1995).
[38] J.Meyer-ter-Vehn, A.Pukhov. Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. Phys. Rev. Lett., 76, 3975(1996).
[39] A.Couairon, A.Mysyrowicz. Femtosecond filamentation in transparent media. Phys. Rep., 441, 47(2007).
[40] X. T.He, T. W.Huang, P. A.Norreys, B.Qiao, A. P. L.Robinson, S. Z.Wu, H.Zhang, C. T.Zhou, H. B.Zhuo. Mitigating the relativistic laser beam filamentation via an elliptical beam profile. Phys. Rev. E, 92, 053106(2015).
[41] L.Bergé, H. G.Kurz, P.Polynkin, A.Schmitt-Sody, S.Skupin. Picosecond laser filamentation in air. New J. Phys., 18, 093005(2016).
[42] M.Grech, D.Pesme, G.Riazuelo, V. T.Tikhonchuk, S.Weber. Coherent forward stimulated-Brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray. Phys. Rev. Lett., 102, 155001(2009).
[43] T.Chapman, L.Divol, D. H.Froula, D. E.Hinkel, J.Katz, E.Kur, S.MacLaren, P.Michel, A. L.Milder, M.Rosen, A.Shvydky, D.Turnbull, G. B.Zimmerman. Beam spray thresholds in ICF-relevant plasmas. Phys. Rev. Lett., 129, 025001(2022).
[44] W. L.Kruer, A. B.Langdon, M.Tabak, S. C.Wilks. Absorption of ultra-intense laser pulses. Phys. Rev. Lett., 69, 1383(1992).
[45] S. C.Rae. Ionization-induced defocusing of intense laser pulses in high-pressure gases. Opt. Commun., 97, 25(1993).
Get Citation
Copy Citation Text
K. Jiang, T. W. Huang, C. N. Wu, M. Y. Yu, H. Zhang, S. Z. Wu, H. B. Zhuo, A. Pukhov, C. T. Zhou, S. C. Ruan. Nonlinear branched flow of intense laser light in randomly uneven media[J]. Matter and Radiation at Extremes, 2023, 8(2): 024402
Category: Fundamental Physics At Extreme Light
Received: Nov. 5, 2022
Accepted: Jan. 22, 2023
Published Online: Apr. 12, 2023
The Author Email: