Journal of Terahertz Science and Electronic Information Technology , Volume. 20, Issue 8, 790(2022)

Terahertz photonic communication technologies

DENGQiuzhuo*, ZHANGHongqi, ZHANG Lu, and YU Xianbin
Author Affiliations
  • [in Chinese]
  • show less
    References(66)

    [1] [1] Cisco Annual Internet Report(2018~2023) White Paper[R/OL]. (2020-03-09) [2021-12-15]. https://www. cisco. com/c/en/us/ solutions/collateral/executive-perspectives/ annual-internet-report/ white-paper-c11-741490.html.

    [2] [2] CHERRY S. Edholm's law of bandwidth[J]. IEEE Spectrum, 2004,41(7):58-60.

    [3] [3] ELAYAN H,AMIN O,SHIHADA B,et al. Terahertz band:the last piece of RF spectrum puzzle for communication systems[J]. IEEE Open Journal of the Communications Society, 2019(1):1-32.

    [4] [4] RICHARDSON D J, FINI J M, NELSON L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362.

    [5] [5] YU X B,CHEN Y,GALILI M,et al. The prospects of ultra-broadband THz wireless communications[C]// 2014 16th International Conference on Transparent Optical Networks (ICTON). Graz,Austria:IEEE, 2014:1-4.

    [7] [7] NAGATSUMA T,DUCOURNAU G,RENAUD C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 2016,10(6):371-379.

    [8] [8] ITO H, FURUTA T S, KODAMA, et al. InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth[J]. Electronics Letters, 2000,36(21):1809-1810.

    [9] [9] ITO H,HIRATA A,MINOTANIT,et al. High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes[J]. IEEE Proceedings-Optoelectronics, 2003,150(2):138-142.

    [10] [10] ITO H,FURUTA T,NAKAJIMA F,et al. Photonic generation of continuous THz wave using uni-traveling-carrier photodiode[J].Journal of Lightwave Technology, 2005,23(12):4016-4021.

    [11] [11] ISHIBASHI T, MURAMOTO Y, YOSHIMATSU T, et al. Uni-traveling-carrier photodiodes for terahertz applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014,20(6):79-88.

    [12] [12] ITO H, ISHIBASHI T. Photonic terahertz-wave generation using slot-antenna-integrated uni-traveling-carrier photodiodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017,23(4):1-7.

    [13] [13] NAGATSUMA T,HORIGUCHI S,MINAMIKATA Y,et al. Terahertz wireless communications based on photonics technologies[J]. Optics Express, 2013,21(20):23736-23747.

    [14] [14] WANG S W,ZHANG L,LU Z J,et al. Photonic generation of terahertz dual-chirp waveforms ranging from 364 to 392 GHz[J]. Optics Express, 2021,29(13):19240-19246.

    [15] [15] WANG Shiwei, LU Zijie, ZHANG Hongqi, et al. Photonic heterodyne generation of phase-coded terahertz signals[J]. Optics Communications, 2021(499):127253.

    [16] [16] WANG Shiwei,LU Zijie,ZHANG Hongqi,et al. A terahertz photonic imaging radar system based on inverse synthetic aperture technique[C]// 2021 26th Optoelectronics and Communications Conference. Hong Kong,China:Optical Society of America, 2021: M3E-4.

    [17] [17] LU Z, WANG S, ZHANG H, et al. Precise Terahertz frequency measurement based on an opto-electronic terahertz comb[C]// 2021 26th Optoelectronics and Communications Conference. Hong Kong,China:Optical Society of America, 2021:M3E-2.

    [18] [18] FAIST J,CAPASSO F,ZHUO Y H,et al. Quantum cascade laser[J]. Science, 1994,264(5158):553-556.

    [19] [19] K.HLER R, TREDICUCCI A, BELTRAM F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417(6885): 156-159.

    [22] [22] CHAN C W I, HU Q, RENO J L. Ground state terahertz quantum cascade lasers[J]. Applied Physics Letters, 2012, 101(15): 151108-1-4.

    [23] [23] GRANT P D,LAFRAMBOISE S R,DUDEK R,et al. Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2009,45(18):952-954.

    [24] [24] CHEN Z,TAN Z Y,HAN Y J,et al. Wireless communication demonstration at 4.1 THz using quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2011,47(17):1002-1004.

    [25] [25] TAN Z,CHEN Z,CAO J,et al. Wireless terahertz light transmission based on digitally-modulated terahertz quantum-cascade laser[J]. Chinese Optics Letters, 2013,11(3):031403.

    [26] [26] ZHANG Hongqi,ZHANG Lu,YU Xianbin,et al. Terahertz band:lighting up next-generation wireless communications[J]. China Communications, 2021,18(5):153-174.

    [27] [27] ZHANG L,PANG X,JIA S,et al. Beyond 100 Gb/s optoelectronic terahertz communications:key technologies and directions[J]. IEEE Communications Magazine, 2020,58(11):34-40.

    [29] [29] IZUMI R, SUZUKI S, ASADA M, et al. 1.98 THz resonant-tunneling-diode oscillator with reduced conduction loss by thick antenna electrode[C]// 2017 42th International Conference on Infrared, Millimeter,and Terahertz Waves(IRMMW-THz). Cancun, Mexico:IEEE, 2017:1-2.

    [31] [31] RIEH J S,YOON D,YUN J. An overview of solid-state electronic sources and detectors for Terahertz imaging[C]// 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology(ICSICT). Guilin,China:IEEE, 2014:1-4.

    [32] [32] SIZOV F. THz radiation sensors[J]. Opto-Electronics Review, 2010,18(1):10-36.

    [33] [33] MONTERO-DE-PAZ J,HOEFLE M,OPREA I,et al. Compact Schottky barrier diode receiver for E-band(60-90 GHz) wireless communications[C]// 2012 IEEE International Topical Meeting on Microwave Photonics. Noordwijk:IEEE, 2012:244-247.

    [34] [34] HARTER T,FüLLNER C,KEMAL J N,et al. 110-m THz wireless transmission at 100 Gbit/s using a Kramers-Kronig Schottky barrier diode receiver[C]// 2018 European Conference on Optical Communication(ECOC). Rome,Italy:IEEE, 2018:1-3.

    [35] [35] WANG S, LU Z, LI W, et al. 26.8 m THz wireless transmission of probabilistic shaping 16-QAM-OFDM signals[J]. APL Photonics, 2020,5(5): 056105.

    [40] [40] CHEN Z,MA X,ZHANG B,et al. A survey on terahertz communications[J]. China Communications, 2019,16(2):1-35.

    [41] [41] GUO X G, CAO J C, ZHANG R, et al. Recent progress in terahertz quantum-well photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012,19(1):8500508.

    [42] [42] ZHANG R, SHAO D X, FU Z L, et al. Terahertz quantum well photodetectors with metal-grating couplers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016,23(4):1-7.

    [43] [43] LI Ruizhi,FU Zhanglong,TAN Zhiyong,et al. Wide spectrum terahertz quantum well photodetector[J]. Electronics Letters, 2020, 56(16):843-845.

    [44] [44] LIU H C,SONG C Y,SPRING-THORPE A J,et al. Terahertz quantum-well photodetector[J]. Applied Physics Letters, 2004,84 (20):4068-4070.

    [45] [45] TAN Z, LI H, WAN W, et al. Direct detection of a fast modulated terahertz light with a spectrally matched quantum-well photodetector[J]. Electronics Letters, 2017,53(2):91-93.

    [46] [46] AUSTON D H. Subpicosecond electro-optic shock waves[J]. Applied Physics Letters, 1983,43(8):713-715.

    [47] [47] AUSTON D H,CHEUNG K P,SMITH P R. Picosecond photoconducting Hertzian dipoles[J]. Applied Physics Letters, 1984,45(3): 284-286.

    [48] [48] AUSTON D H,SMITH P R. Generation and detection of millimeter waves by picosecond photoconductivity[J]. Applied Physics Letters, 1983,43(7):631-633.

    [49] [49] SMITH P R, AUSTON D H, NUSS M C. Subpicosecond photoconducting dipole antennas[J]. IEEE Journal of Quantum Electronics, 1988,24(2):255-260.

    [50] [50] KETCHEN M B,GRISCHKOWSKY D,CHEN T C,et al. Generation of subpicosecond electrical pulses on coplanar transmission lines[J]. Applied Physics Letters, 1986,48(12):751-753.

    [52] [52] LIU T A,LIN G R,CHANG Y C,et al. Wireless audio and burst communication link with directly modulated THz photoconductive antenna[J]. Optics Express, 2005,13(25):10416-10423.

    [53] [53] HARTER T, UMMETHALA S, BLAICHER M, et al. Wireless THz link with optoelectronic transmitter and receiver[J]. Optica, 2019,6(8):1063-1070.

    [54] [54] HARTER T, WEBER M, MUEHLBRANDT S, et al. Wireless THz communications using optoelectronic techniques for signal generation and coherent reception[C]// 2017 Conference on Lasers and Electro-Optics(CLEO). San Jose,CA:IEEE, 2017:1-2.

    [55] [55] QIAO M Y,ZHANG L,WANG S W,et al. 60 Gbit/s PAM-4 wireless transmission in the 310 GHz band with nonlinearity tolerant signal processing[J]. Optics Communications, 2021,492(1):126988.

    [56] [56] ZHANG L,QIAO M Y,WANG S W,et al. Nonlinearity-aware optoelectronic terahertz discrete multitone signal transmission with a zero-bias diode[J]. Optics Letters, 2020,45(18):5045-5048.

    [57] [57] ZHANG H Q, ZHANG L, WANG S W, et al. Tbit/s multi-dimensional multiplexing THz-Over-Fiber for 6G wireless communication[J]. Journal of Lightwave Technology, 2021,39(18):5783-5790.

    [58] [58] JIA S,ZHANG L,WANG S,et al. 2×300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission[J]. Journal of Lightwave Technology, 2020,38(17):4715-4721.

    [59] [59] JIA S, LO M C, ZHANG L, et al. Integrated dual-DFB laser for 408 GHz carrier generation enabling 131 Gbit/s wireless transmission over 10.7 meters[C]// 2019 Optical Fiber Communication Conference. San Diego,CA:IEEE, 2019:Th1C-2.

    [60] [60] ZHANG H,ZHANG L,WANG S,et al. Aggregated 1.059 Tbit/s photonic-wireless transmission at 350 GHz over 10 meters[C]// 2021 Optoelectronics and Communications Conference. Hong Kong,China:Optical Society of America, 2021:T5A-3.

    [61] [61] LU Z,WANG S,LI W,et al. 26.8 m 350 GHz wireless transmission of beyond 100 Gbit/s supported by THz photonics[C]// 2019 Asia Communications and Photonics Conference. Chengdu,China:IEEE, 2019:M4D-6.

    [62] [62] QIN Hua,SUN Jiandong,HE Zezhao,et al. Heterodyne detection at 216,432,and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling[J]. Carbon, 2017(121):235-241.

    [63] [63] BANDURIN D A, SVINTSOV D, GAYDUCHENKO I, et al. Resonant terahertz detection using graphene plasmons[J]. Nature Communications, 2018,9(1):1-8.

    [64] [64] KUKUTSU N,HIRATA A,KOSUGI T,et al. 10 Gbit/s wireless transmission systems using 120-GHz-band photodiode and MMIC technologies[C]// 2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium. Greensboro,NC:IEEE, 2009:1-4.

    [65] [65] DUCOURNAU G, SZRIFTGISER P, BECK A, et al. Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection[J]. IEEE Transactions on Terahertz Science and Technology, 2014,4 (3):328-337.

    [66] [66] KANNO A,INAGAKI K,MOROHASHI I,et al. 40 Gb/s W-band(75~110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission[J]. Optics Express, 2011,19(26):B56-B63.

    [67] [67] PANG Xiaodan,CABALLERO Antonio,DOGADAEV Anton,et al. 100 Gbit/s hybrid optical fiber-wireless link in the W-band (75~110 GHz)[J]. Optics Express, 2011,19(25):24944-24949.

    [70] [70] WANG K, LI X, KONG M, et al. Probabilistically shaped 16QAM signal transmission in a photonics-aided wireless terahertz wave system[C]// 2018 Optical Fiber Communication Conference. San Diego,CA:IEEE, 2018:M4J-7.

    [71] [71] SHAMS H,FICE M J,BALAKIER K,et al. Photonic generation for multichannel THz wireless communication[J]. Optics Express, 2014,22(19):23465-23472.

    [72] [72] SHAMS H,SHAO T,FICE M J,et al. 100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source[J]. IEEE Photonics Journal, 2015,7(3):1-11.

    [73] [73] YU X B,ASIF R,PIELS M,et al. 60 Gbit/s 400 GHz wireless transmission[C]// 2015 International Conference on Photonics in Switching(PS). Florence,Italy:IEEE, 2015:4-6.

    [74] [74] LI X,YU J,ZHAO L,et al. 1-Tb/s photonics-aided vector millimeter-wave signal wireless delivery at D-band[C]// 2018 Optical Fiber Communications Conference and Exposition(OFC). San Diego,CA,USA:IEEE, 2018:1-3.

    [75] [75] GU L, TAN Z Y, WU Q Z, et al. 20 Mbps wireless communication demonstration using terahertz quantum devices[J]. Chinese Optics Letters, 2015,13(8):081402.

    [76] [76] ZHANG Jiao, ZHU Min, LEI Mingzheng, et al. Real-time demonstration of 103.125 Gbps fiber-THz-fiber 2×2 MIMO transparent transmission at 360~430 GHz based on photonics[J]. Optics Letters, 2022,47(5):1214-1217.

    [77] [77] ZHANG L, UDALCOVS A, LIN R, et al. Toward terabit digital radio over fiber systems: architecture and key technologies[J]. IEEE Communications Magazine, 2019,57(4):131-137.

    Tools

    Get Citation

    Copy Citation Text

    DENGQiuzhuo, ZHANGHongqi, ZHANG Lu, YU Xianbin. Terahertz photonic communication technologies[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(8): 790

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 20, 2021

    Accepted: --

    Published Online: Aug. 30, 2022

    The Author Email: DENGQiuzhuo (deng_qz_2000@163.com)

    DOI:10.11805/tkyda2021427

    Topics