Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2875(2024)
Advances in Preparation of Boron Nitride Ceramic Fiber via Polymer-Derived Ceramics
[2] [2] HONG S, LEE C S, LEE M H, et al. Ultralow-dielectric-constant amorphous boron nitride[J]. Nature, 2020, 582(7813): 511–514.
[3] [3] LU S Q, SHEN P, ZHANG H Y, et al. Towards n-type conductivity in hexagonal boron nitride[J]. Nat Commun, 2022, 13(1): 3109.
[4] [4] MIRZAEE M, RASHIDI A, ZOLRIASATEIN A, et al. A simple, low cost, and template-free method for synthesis of boron nitride using different precursors[J]. Ceram Int, 2021, 47(5): 5977–5984.
[6] [6] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nat Mater, 2016, 15(8): 804–809.
[7] [7] ZHANG S N, ZHONG Z H, HUA Y, et al. Properties of super heat-resistant silicon carbide fibres with in situ BN coating[J]. J Eur Ceram Soc, 2022, 42(14): 6404–6411.
[8] [8] WANG F, BAI C, CHEN L, et al. Boron nitride nanocomposites for microwave absorption: A review[J]. Mater Today Nano, 2021, 13: 100108.
[9] [9] VATANPOUR V, ALI NAZIRI MEHRABANI S, KESKIN B, et al. A comprehensive review on the applications of boron nitride nanomaterials in membrane fabrication and modification[J]. Ind Eng Chem Res, 2021, 60(37): 13391–13424.
[10] [10] NAG A, RAO R R, PANDA P K. High temperature ceramic radomes (HTCR)–A review[J]. Ceram Int, 2021, 47(15): 20793–20806.
[11] [11] ZOU C R, LI B, LIU K, et al. Microstructure and mechanical properties of Si3N4f/BN composites with BN interphase prepared by chemical vapor deposition of borazine[J]. J Eur Ceram Soc, 2020, 40(4): 1139–1148.
[14] [14] GUO J R, FU S B, DENG Y P, et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions[J]. Nature, 2022, 606(7916): 909–916.
[15] [15] BERNARD S, SALAMEH C, MIELE P. Boron nitride ceramics from molecular precursors: Synthesis, properties and applications[J]. Dalton Trans, 2016, 45(3): 861–873.
[16] [16] SALLES V, BERNARD S, BRIOUDE A, et al. A new class of boron nitride fibers with tunable properties by combining an electrospinning process and the polymer-derived ceramics route[J]. Nanoscale, 2010, 2(2): 215–217.
[17] [17] MAITY C K, SAHOO S, VERMA K, et al. Facile functionalization of boron nitride (BN) for the development of high-performance asymmetric supercapacitors[J]. New J Chem, 2020, 44(19): 8106–8119.
[18] [18] WANG J I J, YAMOAH M A, LI Q, et al. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits[J]. Nat Mater, 2022, 21(4): 398–403.
[21] [21] DU Y A, WANG B, MENG F X, et al. Nearly stoichiometric BN fiber with high crystallinity achieved by boron trichloride assisted curing process[J]. J Am Ceram Soc, 2022, 105(1): 82–89.
[22] [22] MENG F X, LI W, DU Y A, et al. Insight into the evolution process from novel polyborazine precursor PPMAB to inorganic BN fiber[J]. Ceram Int, 2022, 48(22): 33373–33380.
[23] [23] VIARD A, FONBLANC D, LOPEZ-FERBER D, et al. Polymer derived Si–B–C–N ceramics: 30 years of research[J]. Adv Eng Mater, 2018, 20(10): 1800360.
[24] [24] YAJIMA S, HAYASHI J, OMORI M, et al. Development of a silicon carbide fibre with high tensile strength[J]. Nature, 1976, 261: 683–685.
[25] [25] ACKLEY B J, MARTIN K L, KEY T S, et al. Advances in the synthesis of preceramic polymers for the formation of silicon-based and ultrahigh-temperature non-oxide ceramics[J]. Chem Rev, 2023, 123(8): 4188–4236.
[26] [26] HAYAT A, SOHAIL M, HAMDY M S, et al. Fabrication, characteristics, and applications of boron nitride and their composite nanomaterials[J]. Surf Interfaces, 2022, 29: 101725.
[27] [27] ANGIZI S, ALI AHMAD ALEM S, HASANZADEH AZAR M, et al. A comprehensive review on planar boron nitride nanomaterials: From 2D nanosheets towards 0D quantum dots[J]. Prog Mater Sci, 2022, 124: 100884.
[29] [29] KIMURA Y, KUBO Y, HAYASHI N. High-performance boron-nitride fibers from poly(borazine) preceramics[J]. Compos Sci Technol, 1994, 51(2): 173–179.
[30] [30] CORNU D, MIELE P, FAURE R, et al. Conversion of B(NHCH3)3 into boron nitride and polyborazine fibres and tubular BN structures derived therefrom[J]. J Mater Chem, 1999, 9(3): 757–761.
[31] [31] PONS V, BAKER R T. Soluble boron-nitrogen high polymers from metal-complex-catalyzed amine borane dehydrogenation[J]. Angew Chem Int Ed Engl, 2008, 47(50): 9600–9602.
[32] [32] BERNARD S, MIELE P. Nanostructured and architectured boron nitride from boron, nitrogen and hydrogen-containing molecular and polymeric precursors[J]. Mater Today, 2014, 17(9): 443–450.
[33] [33] BERNARD S, CORNU D, DUPERRIER S, et al. Borazine based preceramic polymers for advanced BN materials[M]//Inorganic and Organometallic Macromolecules. New York, NY: Springer New York, 2008: 351–371.
[34] [34] FAZEN P J, REMSEN E E, BECK J S, et al. Synthesis, properties, and ceramic conversion reactions of polyborazylene. A high-yield polymeric precursor to boron nitride[J]. Chem Mater, 1995, 7(10): 1942–1956.
[35] [35] JASKA C A, TEMPLE K, LOUGH A J, et al. Transition metal-catalyzed formation of boron-nitrogen bonds: Catalytic dehydrocoupling of amine-borane adducts to form aminoboranes and borazines[J]. J Am Chem Soc, 2003, 125(31): 9424–9434.
[36] [36] WIDEMAN T, SNEDDON L G. Dipentylamine-modified polyborazylene: A new, melt-spinnable polymeric precursor to boron nitride ceramic fibers[J]. Chem Mater, 1996, 8(1): 3–5.
[37] [37] WIDEMAN T, REMSEN E E, CORTEZ E, et al. Amine-modified polyborazylenes: Second-generation precursors to boron nitride[J]. Chem Mater, 1998, 10(1): 412–421.
[38] [38] CORNU D, BERNARD S, DUPERRIER S, et al. Alkylaminoborazine- based precursors for the preparation of boron nitride fibers by the polymer-derived ceramics (PDCs) route[J]. J Eur Ceram Soc, 2005, 25(2/3): 111–121.
[39] [39] SEYFERTH D, REES W S Jr. Preparation, characterization, and pyrolysis of [–B10H12·diamine]-n polymers: A new route to boron nitride[J]. Chem Mater, 1991, 3(6): 1106–1116.
[40] [40] BONNETOT B, FRANGE B, GUILHON F, et al. Adducts of trichloroborane with cyanamides. Thermal degradation to boron nitride[J]. Polyhedron, 1994, 13(14): 2211–2216.
[41] [41] OKANO Y, YAMASHITA H. Boron nitride fiber and process for production thereof: US5780154[P]. 1998–07–14.
[42] [42] TOURY B, MIELE P, CORNU D, et al. Boron nitride fibers prepared from symmetric and asymmetric alkylaminoborazines[J]. Adv Funct Mater, 2002, 12(3): 228.
[43] [43] TOURY B, BERNARD S, CORNU D, et al. High-performance boron nitride fibers obtained from asymmetric alkylaminoborazine[J]. J Mater Chem, 2003, 13(2): 274–279.
[45] [45] LEI Y P, WANG Y D, XUE J G, et al. Influence of pyrolysis conditions on fabrication of polymer-derived BN fiber for wave transparent application[J]. Compos Part B Eng, 2013, 51: 254–259.
[46] [46] BERNARD S, MIELE P. Polymer-derived boron nitride: A review on the chemistry, shaping and ceramic conversion of borazine derivatives. Materials, 2014, 7(11): 7436-7459.
[47] [47] DU Y A, WANG B, LI W, et al. Design and synthesis of a novel spinnable polyborazine precursor with high ceramic yield via one-pot copolymerization[J]. J Am Ceram Soc, 2021, 104(11): 5509–5520.
[48] [48] TOURY B, CORNU D, CHASSAGNEUX F, et al. Complete characterisation of BN fibres obtained from a new polyborylborazine[J]. J Eur Ceram Soc, 2005, 25(2/3): 137–141.
[49] [49] ECONOMY J, LIN R Y. High modulus boron nitride fibers: US3668059[P]. 1972–06–06.
[50] [50] TOUTOIS P, MIELE P, JACQUES S, et al. Structural and mechanical behavior of boron nitride fibers derived from poly [(methylamino)borazine] precursors: Optimization of the curing and pyrolysis procedures[J]. J Am Ceram Soc, 2006, 89(1): 42–49.
[51] [51] LEI Y P, WANG Y D, SONG Y C, et al. Nearly stoichiometric BN fiber by curing and thermolysis of a novel poly [(alkylamino)borazine[J]. Ceram Int, 2011, 37(6): 1795–1800.
[52] [52] WANG Z G, GE M, QI X L, et al. Pyrolysis process for boron nitride fiber derived from tris(methylamino)borane: Evolution of the molecular structure[J]. J Am Ceram Soc, 2023, 106(7): 4469–4479.
[53] [53] WANG Z G, GE M, YU S Q, et al. Microstructures and properties of polymer-derived hexagonal boron nitride fibers with initial gradient oxygen content[J]. Mater Charact, 2024, 207: 113503.
[54] [54] DUPERRIER S, CHIRIAC R, SIGALA C, et al. Thermal behaviour of a series of poly[B-(methylamino)borazine] for the preparation of boron nitride fibers[J]. J Eur Ceram Soc, 2009, 29(5): 851–855.
[55] [55] BERNARD S, CORNU D, MIELE P, et al. Pyrolysis of poly[2, 4, 6-tri(methylamino)borazine]and its conversion into BN fibers[J]. J Organomet Chem, 2002, 657(1/2): 91–97.
[56] [56] ZHANG Y B, WANG B, MENG F X, et al. Influence of micro-tension on fiber orientation and crystallization in continuous polymer-derived boron nitride fiber[J]. Ceram Int, 2024, 50(2): 3270–3275.
[57] [57] WANG Z G, GE M, YU S Q, et al. Microstructural evolution of polymer-derived hexagonal boron nitride fibres under high-temperature stretching[J]. J Adv Ceram, 2023, 12(10): 1973–1988.
Get Citation
Copy Citation Text
DU Yiang, ZHANG Yunbo, SONG Quzhi, WANG Fuwen, TAN Shixiang, WANG Bing, WANG Yingde. Advances in Preparation of Boron Nitride Ceramic Fiber via Polymer-Derived Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2875
Category:
Received: Jan. 25, 2024
Accepted: --
Published Online: Nov. 8, 2024
The Author Email: Bing WANG (bingwang@nudt.edu.cn)