Journal of the Chinese Ceramic Society, Volume. 50, Issue 6, 1533(2022)

Effects of Structure Evolution and Quenching on Structure and Electrical Properties of BiFeO3-BaTiO3 Piezoelectric Ceramics Near Phase Boundary

YANG Li... CHEN Chao, JIANG Xiangping, HUANG Xiaokun, NIE Xin and RAO Hanwen |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(34)

    [1] [1] ZHANG S, LI F, JIANG X, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-A review[J]. Prog Mater Sci, 2015, 68(4): 1-66.

    [2] [2] COHEN R E. Origin of ferroelectricity in perovskite oxides[J]. Nat, 1992, 358(6382): 136-138.

    [3] [3] SU C Y, JIANG X P, CHEN C, et al. Structural and depolarization temperature of 0.94Na1/2Bi1/2TiO3-0.06BaTiO3: TiO2 lead free composite ceramics[J]. J Inorg Mater, 2019, 34(10): 1085-1090.

    [4] [4] SUCHOMEL M R, DAVIES P K. Predicting the position of the morphotropic phase boundary in high temperature PbTiO3-Bi (B′B″)O3 based dielectric ceramics[J]. J Appl Phys, 2004, 96(8): 4405-4410.

    [5] [5] KACZMAREK W, PAJAK Z, POLOMSKA M. Differential thermal analysis of phase transitions in (Bi1-xLax)FeO3 solid solution[J]. Solid State Commun, 1975, 17(7): 807-810.

    [6] [6] GHEORGHIU F P, IANCULESCU A, POSTOLACHE P, et al. Preparation and properties of (1-x) BiFeO3-xBaTiO3 multiferroic ceramics[J]. J Alloy Compd, 2010, 506(12): 862-867.

    [7] [7] LEE M H, KIM D J, et al. High-performance lead-free piezoceramics with high curie temperatures[J]. Adv Mater, 2015, 27(43): 6976-6982.

    [8] [8] GOTARDO R A M, VIANA D S F, OLZON-BIONYSIO M, et al. Ferroic states and phase coexistence in BiFeO3-BaTiO3 solid solutions[J]. J Appl Phys, 2012, 112(10): 104112.

    [9] [9] KIM S, KHANAL G, NAM H, et al. Revealing the role of heat treatment in enhancement of electrical properties of lead-free piezoelectric ceramics[J]. J Appl Phys, 2017, 122(1): 014103.

    [10] [10] WEI Y, JIN C, ZENG Y, et al. Polar order evolutions near the rhombohedral to pseudocubic and tetragonal to pseudocubic phase boundaries of the BiFeO3-BaTiO3 system[J]. Mater, 2015, 8(12): 8355-8365.

    [11] [11] CALISIR I, AMIROV A A, KLEPPE A K, et al. Optimisation of functional properties in lead-free BiFeO3-BaTiO3 ceramics through La3+ substitution strategy[J]. J Mater Chem A, 2018, 6(13): 5378-5397.

    [12] [12] KIM D S, CHAEⅡCHEON, LEE S S, et al. Effect of cooling rate on phase transitions and ferroelectric properties in 0.75BiFeO3- 0.25BaTiO3 ceramics[J]. Appl Phys Lett, 2016, 109(20): 202902.

    [13] [13] KUMAR M M, SRINIVAS A, SURYAN S V. Structure property relations in BiFeO3/BaTiO3 solid solutions[J]. J Appl Phys, 2000, 87(2): 855-862.

    [14] [14] JIANG X P, LI L, CHEN C, et al. Structure and properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1-xSnx)O3 lead-free ceramics with high piezoelectric constant[J]. J Inorg Mater, 2014, 29(01): 33-37.

    [15] [15] CAO W, RANDALL C A. Grain size and domain size relations in bulk ceramic ferroelectric materials[J]. J Phys Chem Solids, 1996, 57(10): 1499-1505.

    [16] [16] BEHERA C, CHOUDHARY R N P, DAS P R, Structural and electrical properties of La-modified BiFeO3-BaTiO3 composites[J], J Mater Sci: Mater Electron, 2014, 25(5): 2086-2095.

    [18] [18] LI Q, WEI J, TU T, et al. Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched BiFeO3-BaTiO3 ceramics[J]. J Am Ceram Soc, 2017, 100(12): 5573-5583.

    [20] [20] LIAN H L, SHAO X J, CHEN X M. Structure and electrical properties of Ca2+-doped (Na0.47Bi0.47Ba0.06)TiO3 lead-free piezoelectric ceramics[J]. Ceram Int, 2018, 44(10): 1132.

    [21] [21] SINGH M K, JANG H M, RYU S, et al. Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry[J]. Appl Phys Lett, 2006, 88(4): 042907.

    [22] [22] DEEPTI, KOTHARI, et al. Raman scattering study of polycrystalline magnetoelectric BiFeO3[J]. J Magn Magn Mater , 2008, 320(3-4): 548-552.

    [23] [23] ZHU LF, ZHANG B P, LI S, et al. Enhanced piezoelectric properties of Bi (Mg1/2Ti1/2)O3 modified BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary[J]. J Alloys Compd, 2016, 664: 602-608.

    [24] [24] MAURYA D, PRAMANICK A, FEY GENSON M, et al. Effect of poling on nanodomains and nanoscale structure in A-site disordered lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3[J]. J Mater Chem C. 2014, 2(39): 8423-8431.

    [25] [25] LI F , CHEN G R,LIU X , et al. Phase-composition and temperature dependence of electrocaloric effect in lead-free Bi0.5Na 0.5TiO3- BaTiO3-(Sr0.7Bi0.3)TiO3 ceramics[J]. J Eur Ceram Soc, 2017, 15(37): 4732-4740.

    [26] [26] DELUCA M, Al-JLAIHAWI Z G, REICHMANN K, et al. Remarkable impact of low BiYbO3 doping levels on the local structure and phase transitions of BaTiO3[J]. J Mater Chem A, 2018, 6(13): 5443-5451.

    [27] [27] BAD APANDA T, SENTHIL V, PANIGRAHI S, et al. Diffuse phase transition behavior of dysprosium doped barium titanate ceramic[J]. J Electroceram, 2013, 31(1-2): 55-60.

    [28] [28] MA J, ZHANG B P, CHEN J Y. Excess Bi and cooling method on phase structure and electrical properties of BiFeO3-BaTiO3 lead-free Ceramics[J]. J Inorg Mater, 2017, 32(10): 1035-1041.

    [29] [29] CLIVE A, RANDALL. et al. Intrinsic and extrinsic size effects in fine grained morphotropic phase boundary lead zirconate titanate ceramics[J]. J Am Ceram Soc, 2005, 81(3): 677-688.

    [31] [31] XIAO B, REN. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching[J]. Nat, 2004, 3(2): 91-94.

    [32] [32] ZHANG L X, REN X. In situ observation of reversible domain switching in aged Mn-doped BaTiO3 single crystals[J]. Phys Rev B, 2005, 71(17): 4108.

    [33] [33] HUANG S G, et al. Enhanced piezoelectric properties by reducing leakage current in Co modified 0.7BiFeO3-0.3BaTiO3 ceramics[J]. Ceram Int, 2018, 44(8): 8955-8962.

    [34] [34] AKRAM F, HAIB M, BAE J, et al. Effect of heat-treatment mechanism on structural and electromechanical properties of eco-friendly (Bi, Ba)(Fe, Ti)O3 piezoceramics[J]. J Mater sci, 2021, 56(23): 13198-13214.

    [35] [35] WANG Q, WANG C M, WANG J F, et al. High performance Aurivillius-type bismuth titanate niobate (Bi3TiNbO9) piezoelectric ceramics for high temperature applications[J]. Ceram Int, 2016, 42(6): 6993-7000.

    [36] [36] LEE M H, KIM D J, CHOI H I, et al. Thermal quenching effects on the ferroelectric and piezoelectric properties of BiFeO3-BaTiO3 ceramics[J]. ACS Appl Electron Mater, 2019, 1(9): 1772-1780.

    [37] [37] DAMJANOVIC D, A morphotropic phase boundary system based on polarization rotation and polarization extension[J]. Appl Phys Lett, 2010, 97 (6): 2906.

    CLP Journals

    [1] XI Xiang, CHU Hongqiang, RAN Qianping, ZHANG Wenyi, JIANG Linhua, CHUNG D.D.L.. Low-Frequency Dielectric Behavior of Common Portland Cement-Based Materials: A Review[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2074

    Tools

    Get Citation

    Copy Citation Text

    YANG Li, CHEN Chao, JIANG Xiangping, HUANG Xiaokun, NIE Xin, RAO Hanwen. Effects of Structure Evolution and Quenching on Structure and Electrical Properties of BiFeO3-BaTiO3 Piezoelectric Ceramics Near Phase Boundary[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1533

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 30, 2021

    Accepted: --

    Published Online: Dec. 6, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics