Infrared and Laser Engineering, Volume. 54, Issue 1, 20240376(2025)

FDLIE-YOLO: Frequency domain enhanced end-to-end low-light image target detection method

Yang LI1,2,3, Xianguo LI1,3, Lian CHEN4、*, Qingyong YANG2, Changyu XU1,3, and Sheng XU2
Author Affiliations
  • 1School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China
  • 2School of Software and Communications, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
  • 3Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin 300387, China
  • 4School of Aeronautics and Astronautics, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
  • show less
    Figures & Tables(14)
    Low-light image
    Overall structure of FDLIE-YOLO
    Overall structure of FDPB
    YOLOv8 framework
    Subjective enhancement effect of LOL-Real dataset
    Subjective enhancement effect of Exdark dataset
    Detection effect of each end-to-end target detection method in Exdark dataset
    Test results of mAP metrics in Exdark dataset with different detection modulators
    • Table 1. Metrics averages for different network models on the LOL-Real dataset

      View table
      View in Article

      Table 1. Metrics averages for different network models on the LOL-Real dataset

      ModelMBLLEN[11]Zero-DCE[13]KinD[12]FECNet[21]SNR-Aware[22]PENet[15]FDLIENet(Ours)
      PSNR↑/dB17.9014.8320.0120.6723.4821.4823.18
      SSIM↑0.7020.5310.8410.7950.8470.8380.858
      Parameter/×10120.450.078.020.1539.120.210.14
    • Table 2. Comparison of Exdark metrics for each augmented network on Exdark data

      View table
      View in Article

      Table 2. Comparison of Exdark metrics for each augmented network on Exdark data

      ModelMBLLEN[11]Zero-DCE[13]KinD[12]FECNet[21]SNR-Aware[22]PENet[15]FDLIENet (Ours)
      NIQE↓4.385.054.194.333.884.283.98
      Parameter/×10120.450.078.020.1539.120.210.16
    • Table 3. Comparison of the detection performance of FDLIE-YOLO with the combined method of preprocessing network and target detection network

      View table
      View in Article

      Table 3. Comparison of the detection performance of FDLIE-YOLO with the combined method of preprocessing network and target detection network

      MetricsBicycleBoatBottleBusCarCatChairCupDogMbikePeopleTablemAP
      YOLOv8n81.875.379.291.283.270.076.179.278.277.381.856.577.4
      MBLLEN+YOLOv8n[11]83.078.180.593.384.171.677.381.180.478.682.158.679.0
      Zero-DCE+YOLOv8n[13]82.176.980.392.883.772.377.880.679.477.981.956.878.5
      KinD+YOLOv8n[12]83.178.782.193.183.972.978.181.480.378.382.059.879.4
      FDLIE-YOLO(YOLOv8n )83.979.481.994.285.871.877.982.581.578.683.161.880.2
    • Table 4. Comparison of detection performance of each end-to-end low-light target detection method

      View table
      View in Article

      Table 4. Comparison of detection performance of each end-to-end low-light target detection method

      MetricsBicycleBoatBottleBusCarCatChairCupDogMbikePeopleTablemAP
      YOLOv881.875.379.291.283.270.076.179.278.277.381.856.577.4
      IA-YOLO[22]86.279.881.292.384.171.971.182.280.877.982.258.879.0
      PE-YOLO85.879.380.793.883.970.577.581.480.279.383.858.579.5
      FDLIE-YOLO(Ours)85.279.482.194.285.872.678.982.581.578.683.164.180.6
    • Table 5. Comparison of the detection performance of each detection method

      View table
      View in Article

      Table 5. Comparison of the detection performance of each detection method

      MetricsmAPFPSParam/×1012
      Dynamic R-CNN[8]60.5%38.6541.3
      RT-DETR[10]70.7%84.8942.0
      YOLOv5n66.4%81.151.77
      YOLOv775.8%85.3336.5
      YOLOv8n77.4%89.893.01
      FDLIE-YOLO(Ours)80.6%88.823.16
    • Table 6. Performance analysis of each component

      View table
      View in Article

      Table 6. Performance analysis of each component

      MetricsExdark
      mAPFPS
      FDLIE-YOLO (Ours)80.6%88.82
      Ours w/o FDPB79.8%89.28
      Ours w/o Lamp80.1%89.68
    Tools

    Get Citation

    Copy Citation Text

    Yang LI, Xianguo LI, Lian CHEN, Qingyong YANG, Changyu XU, Sheng XU. FDLIE-YOLO: Frequency domain enhanced end-to-end low-light image target detection method[J]. Infrared and Laser Engineering, 2025, 54(1): 20240376

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 图像处理

    Received: Oct. 3, 2024

    Accepted: --

    Published Online: Feb. 12, 2025

    The Author Email: CHEN Lian (chenlhit@163.com)

    DOI:10.3788/IRLA20240376

    Topics