Journal of Innovative Optical Health Sciences, Volume. 14, Issue 4, 2141007(2021)

Synthesis and characterization of reporter molecules embedded core-shell nanoparticles as SERS nanotags

Chloe Duffield, Nana Lyu, and Yuling Wang*
Author Affiliations
  • Department of Molecular Sciences ARC Centre of Excellence for Nanoscale BioPhotonics Faculty of Science and Engineering, Macquarie University Sydney, NSW 2109, Australia
  • show less
    References(43)

    [1] [1] D. Flieger, A. S. Ho?, T. Sauerbruch, I. G. Schmidt- Wolf, "Influence of cytokines, monoclonal antibodies and chemotherapeutic drugs on epithelial cell adhesion molecule (EpCAM) and LewisY antigen expression," Clin. Exp. Immunol. 123(1), 9–14 (2001).

    [2] [2] J. Li, A. Wuethrich, A. A. I. Sina, H.-H Cheng, Y. Wang, A. Behren, P. N. Mainwaring, M. Trau, "A digital single-molecule nanopillar SERS platform for predicting and monitoring immune toxicities in immunotherapy," Nat. Commun. 12(1), 1087 (2021).

    [3] [3] S. Tsao, J. Wang, Y. Wang, A. Behren, J. Cebon, M. Trau, "Characterising the phenotypic evolution of circulating tumour cells during treatment," Nat. Commun. 9, 1482 (2018).

    [4] [4] W. Zhang, L. Jiang, R. J. Diefenbach, D. H. Campbell, B. J. Walsh, N. H. Packer, Y. Wang, "Enabling sensitive phenotypic profiling of cancer-derived small extracellular vesicles using surface-enhanced Raman spectroscopy nanotags," ACS Sensors 5(3), 764–771 (2020).

    [5] [5] W. Xie, S. Schlücker, "Medical applications of surface-enhanced Raman scattering," Phys. Chem. Chem. Phys. 15(15), 5329–5344 (2013).

    [6] [6] N. Lyu, V. K. Rajendran, R. J. Diefenbach, K. Charles, S. J. Clarke, A. Engel, Sydney Colorectal Cancer Study Investigators, H. Rizos, M. P. Molloy, Y. Wang, "Multiplex detection of ctDNA mutations in plasma of colorectal cancer patients by PCR/SERS assay," Nanotheranostics 4(4), 224–232 (2020).

    [7] [7] J. Jana, M. Ganguly, T. Pal, "Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application," RSC Adv. 6(89), 86174–86211 (2016).

    [8] [8] K. Kamil Reza, J. Wang, R. Vaidyanathan, S. Dey, Y. Wang, M. Trau, "Electrohydrodynamic-induced SERS immunoassay for extensive multiplexed biomarker sensing," Small 13(9), 1602902 (2017).

    [9] [9] Y. Liu, N. Lyu, V. K. Rajendran, J. Piper, A. Rodger, Y. Wang, "Sensitive and direct DNA mutation detection by surface-enhanced raman spectroscopy using rational designed and tunable plasmonic nanostructures," Anal. Chem. 92(8), 5708–5716 (2020).

    [10] [10] D. Li, L. Jiang, J. A. Piper, I. S. Maksymov, A. D. Greentree, E. Wang, Y. Wang, "Sensitive and multiplexed SERS nanotags for the detection of cytokines secreted by lymphoma," ACS Sensors 4(9), 2507–2514 (2019).

    [11] [11] Y. Zhang, P. Yang, M. A. Habeeb Muhammed, S. K. Alsaiari, B. Moosa, A. Almalik, A. Kumar, E. Ringe, N. M. Khashab, "Tunable and linker free nanogaps in core–shell plasmonic nanorods for selective and quantitative detection of circulating tumor cells by SERS," ACS Appl. Mater. Interf. 9(43), 37597–37605 (2017).

    [12] [12] W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, B. Ren, "Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards," Angew. Chem. Int. Ed. Engl. 54(25), 7308–7312 (2015).

    [13] [13] Y. Feng, Y. Wang, H. Wang, T. Chen, Y. Y. Tay, L. Yao, Q. Yan, S. Li, H. Chen, "Engineering "hot" nanoparticles for surface-enhanced raman scattering by embedding reporter molecules in metal layers," Small 8(2), 246–251 (2012).

    [14] [14] J. Reguera, J. Langer, D. Jimenez de Aberasturi, L. M. Liz-Marzan, "Anisotropic metal nanoparticles for surface enhanced Raman scattering," Chem. Soc. Rev. 46(13), 3866–3885 (2017).

    [15] [15] V. Tran, C. Thiel, J. T. Svejda, M. Jalali, B. Walkenfort, D. Erni, S. Schlücker, "Probing the SERS brightness of individual Au nanoparticles, hollow Au/Ag nanoshells, Au nanostars and Au core/Au satellite particles: Single-particle experiments and computer simulations," Nanoscale 10(46), 21721–21731 (2018).

    [16] [16] C. L. Zavaleta,B.R. Smith, I.Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, S. S. Gambhir, "Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy," PNAS 106(32), 13511–13516 (2009).

    [17] [17] J.-H. Kim, H. Kang, S. Kim, B.-H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, Y.-S. Lee, "Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles," Chem. Commun. 47(8), 2306–2308 (2011).

    [18] [18] Y. Yang, C. Gu, J. Li, "Sub-5 nm metal nanogaps: Physical properties, fabrication methods, and device applications," 15(5), 1804177 (2019).

    [19] [19] V. Tran, B. Walkenfort, M. K€onig, M. Salehi, S. Schlücker, "Rapid, quantitative, and ultrasensitive point-of-care testing: A portable SERS reader for lateral flow assays in clinical chemistry," Angew. Chem. Int. Edn. 58(2), 442–446 (2019).

    [20] [20] A. M. Fales, T. Vo-Dinh, "Silver embedded nanostars for SERS with internal reference (SENSIR)," J. Mater. Chem. C 3(28), 7319–7324 (2015).

    [21] [21] J. Wang, K. M. Koo, Y. Wang, M. Trau, "Engineering state-of-the-art plasmonic nanomaterials for SERS-based clinical liquid biopsy applications," Adv. Sci. 6(23), 1900730 (2019).

    [22] [22] K. Mahato, S. Nagpal, M. A. Shah, A. Srivastava, P. K. Maurya, S. Roy, A. Jaiswal, R. Singh, P. Chandra, "Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics," 3 Biotech 9(2), 57 (2019).

    [23] [23] T. Yang, J. Jiang, "Embedding Raman tags between Au nanostar@nanoshell for multiplex immunosensing," Small (Weinheim an der Bergstrasse, Germany) 12(36), 4980–4985 (2016).

    [24] [24] B. Khlebtsov, N. Khlebtsov, "Surface-enhanced Raman scattering-based lateral-flow immunoassay," Nanomaterials (Basel) 10(11), 2228 (2020).

    [25] [25] Y. Wang, R. Vaidyanathan, M. J. A. Shiddiky, M. Trau, "Enabling rapid and specific surface-enhanced Raman scattering immunoassay using nanoscaled surface shear forces," ACS Nano 9(6), 6354–6362 (2015).

    [26] [26] Y. Zhang, L. Lin, J. He, J. Ye, "Optical penetration of surface-enhanced micro-scale spatial offset Raman spectroscopy in turbid gel and biological tissue," J. Innov. Opt. Health Sci. 2141001 (2021).

    [27] [27] L. Huang, Y. Yang, F. Yang, S. Liu, Z. Zhu, Z. Lei, J. Guo, "Functions of EpCAM in physiological processes and diseases (review)," Int. J. Mol. Med. 42(4), 1771–1785 (2018).

    [28] [28] B. T. van der Gun, L. J. Melchers, M. H. Ruiters, L. F. de Leij, P. M. McLaughlin, M. G. Rots, "EpCAM in carcinogenesis: The good, the bad or the ugly," Carcinogenesis 31(11), 1913–1921 (2010).

    [29] [29] D. Liu, J. Sun, J. Zhu, H. Zhou, X. Zhang, Y. Zhang, "Expression and clinical significance of colorectal cancer stem cell marker EpCAM(high)/CD44(+) in colorectal cancer," Oncol. Lett. 7(5), 1544–1548 (2014).

    [30] [30] J. Wang, W. Anderson, J. Li, L. L. Lin, Y. Wang, M. Trau, "A high-resolution study of in situ surfaceenhanced Raman scattering nanotag behavior in biological systems," J. Coll. Interf. Sci. 537, 536– 546 (2019).

    [31] [31] V. Tran, B. Walkenfort, M. K€onig, M. Salehi, S. Schlücker, "Rapid, quantitative, and ultrasensitive point-of-care testing: A portable SERS reader for lateral flow assays in clinical chemistry," Angew. Chem. Int. Ed. Engl. 58(2), 442–446 (2019).

    [32] [32] Y. Wang, S. Schlucker, "Rational design and synthesis of SERS labels," Analyst 138(8), 2224–2238 (2013).

    [33] [33] B. Shan, Y. Pu, Y. Chen, M. Liao, M. Li, "Novel SERS labels: Rational design, functional integration and biomedical applications," Coord. Chem. Rev. 371, 11–37 (2018).

    [34] [34] B. M. DeVetter, P. Mukherjee, C. J. Murphy, R. Bhargava, "Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surfaceenhanced Raman spectroscopy," Nanoscale 7(19), 8766–8775 (2015).

    [35] [35] D. S. Grubisha, R. J. Lipert, H.-Y. Park, J. Driskell, M. D. Porter, "Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced Raman scattering and immunogold labels," Anal. Chem. 75(21), 5936–5943 (2003).

    [36] [36] Y. Zhou, P. Zhang, "Simultaneous SERS and surface-enhanced fluorescence from dye-embedded metal core–shell nanoparticles," Phys. Chem. Chem. Phys. 16(19), 8791–8794 (2014).

    [37] [37] Z. Ye, L. Lin, Z. Tan, Y.-J. Zeng, S. Ruan, J. Ye, "Sub-100 nm multi-shell bimetallic gap-enhanced Raman tags," Appl. Surf. Sci. 487, 1058–1067 (2019).

    [38] [38] Y. Zhou, C. Lee, J. Zhang, P. Zhang, "Engineering versatile SERS-active nanoparticles by embedding reporters between Au-core/Ag-shell through layerby- layer deposited polyelectrolytes," J. Mater. Chem. C 1(23), 3695–3699 (2013).

    [39] [39] D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, J. M. Nam, "Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap," Nat. Nanotechnol. 6(7), 452–460 (2011).

    [40] [40] Y. Ye, W. Yi, W. Liu, Y. Zhou, H. Bai, J. Li, G. Xi, "Remarkable surface-enhanced Raman scattering of highly crystalline monolayer Ti3C2 nanosheets," Sci. China Mater. 63(5), 794–805 (2020).

    [41] [41] J. Shen, L. Xu, C. Wang, H. Pei, R. Tai, S. Song, Q. Huang, C. Fan, G. Chen, "Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanostructures," Angew. Chem. Int. Ed. Engl. 53(32), 8338–8342 (2014).

    [42] [42] B. Zhao, J. Shen, S. Chen, D. Wang, F. Li, S. Mathur, S. Song, C. Fan, "Gold nanostructures encoded by non-fluorescent small molecules in polyA-mediated nanogaps as universal SERS nanotags for recognizing various bioactive molecules," Chem. Sci. 5(11), 4460–4466 (2014).

    [43] [43] N. G. Khlebtsov, L. Lin, B. N. Khlebtsov, J. Ye, "Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications," Theranostics 10(5), 2067–2094 (2020).

    Tools

    Get Citation

    Copy Citation Text

    Chloe Duffield, Nana Lyu, Yuling Wang. Synthesis and characterization of reporter molecules embedded core-shell nanoparticles as SERS nanotags[J]. Journal of Innovative Optical Health Sciences, 2021, 14(4): 2141007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 27, 2021

    Accepted: May. 31, 2021

    Published Online: Aug. 23, 2021

    The Author Email: Wang Yuling (yuling.wang@mq.edu.au)

    DOI:10.1142/s1793545821410078

    Topics