Optical Communication Technology, Volume. 48, Issue 3, 68(2024)
Radio frequency fingerprint signal recognition method for internet of things devices based on LR-ODCNN
[1] [1] OSSEIRAN A, PERSSON P, ZAIDIET A, et al. Ericsson white paper: 5G wireless access: an overview[R/OL]. [2024-01-29]. https://www.ericssoncom/en/reports-and-papers/white-papers/5g-wireless-access-an-overview.
[2] [2] KHAN A A, LAGHARI A A, SHAIKH Z A, et al. Internet of things (IoT)security with blockchain technology: a state-of-the-art review [J].IEEE Access, 2022, 10: 122679-122695.
[3] [3] LAWU B L, FILBERT F, ASIH K, et al. A systematic literature review of internet of things cybersecurity [C]//AIP. Proceedings of the 3rd International Conference on Robotic Automation and Biomimetic Harmonic Advanced Research (ICOBAR) 2021. Melville: AIP Publishing, 2023: 203-207.
[4] [4] ZHANG J, WOODS R, SANDELL M, et al. Radio frequency fingerprint identification for narrowband systems, modelling and classification [J].IEEE Transactions on Information Forensics and Security, 2021, 16: 3974-3987.
[5] [5] ZHANG J, SHEN G, SAAD W, et al. Radio frequency fingerprint identification for device authentication in the internet of things [J]. IEEE Communications Magazine, 2023, 61(10): 110-115.
[6] [6] YANG Y, YAN T. RF fingerprint recognition method based on DBN-SVM [C]//IEEE. Proceedings of 2022 IEEE 10th Intemational Conference on Information, Communication and Networks (ICICN). Zhangye: IEEE,2022: 572-577.
[8] [8] WU Q, FERES C, KUZMENKO D, et al. Deep learning based RF fingerprinting for device identification and wireless security [J]. Electronics Letters, 2018, 54(24): 1405-1407.
[9] [9] DING L, WANG S, WANG F, et al. Specific emitter identification via convolutional neural networks [J]. IEEE Communications Letters, 2018, 22(12): 2591-2594.
[10] [10] SANKHE K, BELGIOVINE M, ZHOU F, et al. ORACLE: optimized radio classification through convolutional neural networks [C]//IEEE. Proceedings of INFOCOM 2019-IEEE Conference on Computer Communications. Paris: IEEE, 2019: 370-378.
[11] [11] LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution [J].arXiv preprint, 2022, 14(8): 2209-2216.
[12] [12] PAN Y, YANG S, PENG H, et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7: 54425-54434.
[14] [14] FANG W, YU Z, CHEN Y, et al. Deep residual learning in spiking neural networks [J]. Advances in Neural Information Processing Systems,2021, 34: 21056-21069.
[15] [15] JIAN T, RENDON B, OJUBA E, et al. Deep learning for RF finger-printing: a massive experimental study [J]. IEEE Internet of Things Magazine, 2020, 3(1): 50-57.
[16] [16] ZENG Y, GONG Y, LIU J W, et al. Multi-channel attentive feature fusion for radio frequency fingerprinting[EB/OL]. [2024-01-29]. https://arx-iv.org/pdf/2303.10691v2.
Get Citation
Copy Citation Text
NONG Xin, QING Guoneng, ZHU Kangqi, ZHANG Zhenrong, ZHENG Jiali. Radio frequency fingerprint signal recognition method for internet of things devices based on LR-ODCNN[J]. Optical Communication Technology, 2024, 48(3): 68
Received: Jan. 29, 2024
Accepted: --
Published Online: Aug. 2, 2024
The Author Email: