Optical Communication Technology, Volume. 47, Issue 8, 23(2021)
Study of performance of micro-size LED for improving modulation bandwidth of visible light communication
[1] [1] NAKAMURA S, MUKAI T, SENOH M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J]. Applied Physics Letters, 1994, 64(13): 1687-1689.
[3] [3] JI R N, WANG S W, LIU Q Q, et al. High-speed visible light communications:enabling technologies and state of the art[J]. Applied Sciences, 2018, 8: 1-19.
[4] [4] FERREIRA R X G, XIE E, MCKENDRY J J D, et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications[J]. IEEE Photonics Technology Letters, 2016, 28(19): 2023-2026.
[5] [5] ISLIM M S, FERREIRA R X, HE X, et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED[J]. Photonics Research, 2017, 5(2): A35-A43.
[6] [6] HUANG Y, GUO Z, HUANG H, et al. Influence of current density and capacitance on the bandwidth of VLC LED[J]. IEEE Photonics Technology Letters, 2018, 30: 773-776.
[7] [7] MCKENDRY J J D, GREEN R P, KELLY A E, et al. High-speed visible light communications using individual pixels in a micro light-emitting diode array[J]. IEEE Photonics Technology Letters, 2010, 22: 1346-1348.
[8] [8] TIAN P, LIU X, YI S, et al. High-speed underwater optical wireless communication using a blue GaN-based micro-LED[J]. Optics Express, 2017, 25: 1193-1201.
[9] [9] LU Z, TIAN P, CHEN H, et al. Active tracking system for visible light communication using a GaN-based micro-LED and NRZ-OOK[J]. Optics Express, 2017, 25: 17971-17981.
[10] [10] MINH H L, O'BRIEN D C, FAULKNER G, et al. 100-Mb/s NRZ visible light communications using a post-equalized white LED[J]. IEEE Photonics Technology Letters, 2009, 21: 1063-1065.
[11] [11] ZHU S C, ZHAO L X, YANG C, et al. GaN-based flip-chip parallel micro LED array for visible light communication[C]// International Con-ference on Optoelectronics and Microelectronics Technology and Applica-tion, October 10-12, 2016, Shanghai, China. Bellingham: SPIE, 2017: 102441Y.1-102441Y.7.
[12] [12] HUANG H M, HUANG C, WU H C, et al. Compromise between illumination performance and modulation bandwidth for micro-size white light emitting diode by selecting injected current[J]. Applied Physics A, 2019, 125(8): 522-1-522-8.
[14] [14] ZHU S C, YU Z G, ZHAO L X, et al. Enhancement of modulation bandwidth for GaN-based light-emitting diode by surface plasmons[J]. Optics Express, 2015, 23(11): 13752-13760.
[15] [15] IKEDA K, HORIUCHI S, TANAKA T, et al. Design parameters of frequency response of GaAs-(Ga,Al) as double heterostructure LED's for optical communications[J]. IEEE Transactions Electron Devices, 1977, 24(7): 1001-1005.
[16] [16] GREEN R P, MCKENDRY J J D, MASSOUBRE D, et al. Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes[J]. Applied Physics Letters, 2013, 102(9): 091103-1-091103-4.
[17] [17] ZHAO L X, ZHU S H, WU C H, et al. GaN-based LEDs for light communication[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(10): 107301-1-107301-10.
[18] [18] BLANK T V, GOL'DBERG Y A. Mechanisms of current flow inmetal-semiconductor ohmic contacts[J]. Semiconductors, 2007, 41(11):1263-1292.
[19] [19] MCKENDRY J J D, MASSOUBRE D, ZHANG S, et al. Visible-light communications using a CMOS-controlled micro-light-emitting-diode array[J]. Journal Lightwave. Technology, 2012, 30(1): 61-67.
[20] [20] LIAO C L, CHANG Y F, HO C L, et al. High-speed GaN based blue light-emitting diodes with gallium-doped ZnO current spreading layer[J]. IEEE Electron Device Letters, 2013, 34: 611-613.
[21] [21] ZHOU S, YUAN S, LIU Y, et al. Highly efficient and reliable high-power LEDs with patterned sapphire substrate and strip-shaped distributed current blocking layer[J]. Applied. Surface. Science, 2015, 355: 1014-1019.
[22] [22] HAO G D, TAMARI N, TANIGUCHI M, et al. Current crowding and self-heating effects in AlGaN-based flip-chip deep-ultraviolet light-emitting diodes[J]. Journal of Physics D, 2018, 51(3): 035103-1-035103-21.
[23] [23] RODRIGUEZ H, LOBO N, EINFELDT S, et al. GaN-based ultraviolet light-emitting diodes with multifinger contacts[J]. Physica Status Solidi A, 2011, 207: 2585-2588.
[24] [24] TAN L J, WANG K, XIE Z J, et al. Improving the -3 dB bandwidth of micro-size LEDs through p-electrode patterns for visible light communication[J]. Applied Optics, 2020, 59(23): 7004-7010.
[25] [25] DUPR L, MARRAA M, VERNEYA V, et al. Processing and charac-terization of high resolution GaN/InGaN LED arrays at 10 micron pitch for micro display applications[C]// Conference on Gallium Nitride Materials & Devices XII, January 30-February 2, 2017, San Francisco, America. Bellingham: SPIE, 2017: 1010422-1-1010422-8.
[26] [26] TIAN C, GUO S X, LIANG J Q, et al. Effects of unit size on current density and illuminance of micro-LED-array[J]. Optoelectronics Letters, 2017, 13(2): 84-89.
[27] [27] ZHOU Z, YAN B, TENG D D, et al. Improving the 3dB bandwidth of medium power GaN-based LEDs through periodic micro via-holes for visible light communications[J]. Optics Communications, 2017, 392: 175-179.
[28] [28] SANTOS J M M, JONES B E, SCHLOSSER P J, et al. Hybrid GaN LED with capillary-bonded II-VI MQW color-converting membrane for visible light communications[J]. Semiconductor Science and Technology, 2015, 30(3): 035012-1-035012-7.
Get Citation
Copy Citation Text
LIU Dengfei, XIA Jiang, LUO Yunhan, XIONG Yu, WU Hao, CHEN Zhe. Study of performance of micro-size LED for improving modulation bandwidth of visible light communication[J]. Optical Communication Technology, 2021, 47(8): 23
Category:
Received: Jun. 15, 2021
Accepted: --
Published Online: Sep. 2, 2021
The Author Email: