Journal of the Chinese Ceramic Society, Volume. 51, Issue 7, 1697(2023)
W Doped V2O5 Nanosheets as Cathode Material for High-Performance Aqueous Zinc Ion Battery
[1] [1] RACCICHINI R, VARZI A, PASSERINI S, et al. The role of graphene for electrochemical energy storage[J]. Nat Mater, 2015, 14(3):271–279.
[2] [2] LI Z, CHEN J, ZHOU J, et al. High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator[J]. Nano Energy, 2016, 22: 548–557.
[3] [3] OBAMA B. The irreversible momentum of clean energy[J]. Science,2017, 355(6321): 126–129.
[4] [4] CHIANG Y M. Building a better battery[J]. Science, 2010, 330(6010):1485–1486.
[5] [5] KASNATSCHEEW J, RODEHORST U, STREIPERT B, et al. Learning from overpotentials in lithium ion batteries: a case study on the LiNi1/3Co1/3Mn1/3O2 (NCM) cathode[J]. J Electrochem Soc, 2016,163(14): A2943.
[6] [6] MOHANTY D, DAHLBERG K, KING D M, et al. Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: preventing surface phase transitions for high-voltage lithium-ion batteries[J]. Sci Reports, 2016, 6(1): 1–16.
[7] [7] CANEPA P, SAI GAUTAM G, HANNAH D C, et al. Odyssey of multivalent cathode materials: Open questions and future challenges[J].Chem Rev, 2017, 117(5): 4287–4341.
[8] [8] SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. J Power Sources, 2010, 195(9): 2419–2430.
[9] [9] LIU J. Addressing the grand challenges in energy storage[J]. Adv Fun Mater, 2013, 23(8): 924–928.
[10] [10] LI Y, HUANG Z, KALAMBATE P K, et al. V2O5 nano paper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery[J]. Nano Energy, 2019, 60:752–759.
[11] [11] KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nat Energy, 2016, 1(10): 1–8.
[12] [12] LV T T, LUO X, YUAN G Q, et al. Layered VO2@ N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries[J]. Chem Engin J, 2022, 428: 131211.
[13] [13] ALFARUQI M H, MATHEW V, GIM J, et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system[J]. Chem Mater, 2015, 27(10):3609–3620.
[14] [14] GUO C, LIU H, LI J, et al. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery[J]. Electroch Acta, 2019, 304:370–377.
[15] [15] WANG J, WANG J G, LIU H, et al. Zinc ion stabilized MnO 2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries[J]. J Mater Chem A, 2019, 7(22): 13727–13735.
[16] [16] KHAMSANGA S, PORNPRASERTSUK R, YONEZAWA T, et al.δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries[J]. Sci Reports, 2019, 9(1): 1–9.
[17] [17] WANG C, WANG M, HE Z, et al. Rechargeable aqueous zinc–manganese dioxide/Graphene batteries with high rate capability and large capacity[J]. ACS Appl Energy Mater, 2020, 3(2):1742–1748.
[18] [18] WEI C, XU C, LI B, et al. Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage[J]. J Phys Chem Solids, 2012, 73(12): 1487–1491.
[19] [19] ZHANG L, CHEN L, ZHOU X, et al. Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery[J]. Sci Reports, 2015, 5(1): 1–11.
[20] [20] JIA Z, WANG B, WANG Y. Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries[J]. Mater Chem Phys, 2015, 149: 601–606.
[21] [21] HOU Z, ZHANG X, LI X, et al. Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery[J]. J Mater Chem A, 2017, 5(2): 730–738.
[22] [22] LU Y, WANG J, ZENG S, et al. An ultrathin defect-rich Co3O4 nanosheet cathode for high-energy and durable aqueous zinc ion batteries[J]. J Mater Chem A, 2019, 7(38): 21678–21683.
[23] [23] ZHANG X, RUI X, CHEN D, et al. Na3V2(PO4)3: An advanced cathode for sodium-ion batteries[J]. Nanoscale, 2019, 11(6): 2556–2576.
[24] [24] LI H, YANG Q, MO F, et al. MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries[J]. Energy Storage Mater, 2019, 19: 94–101.
[25] [25] HE P, YAN M, ZHANG G, et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode[J]. Adv Energy Mater, 2017, 7(11):1601920.
[26] [26] ZHANG L, CHEN L, ZHOU X, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system[J]. Adv Energy Mater, 2015, 5(2): 1400930.
[27] [27] LI H, MA L, HAN C, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy,2019, 62: 550–587.
[28] [28] DING J, GAO H, LIU W, et al. Operando constructing vanadium tetrasulfide-based heterostructures enabled by extrinsic adsorbed oxygen for enhanced zinc ion storage[J]. J Mater Chem A, 2021, 9(18):11433–11441.
[29] [29] LI Y, HUANG Z, KALAMBATE P K, et al. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery[J]. Nano Energy, 2019, 60:752–759.
[30] [30] ZHOU J, SHAN L, WU Z, et al. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode[J]. Chem Commun,2018, 54(35): 4457–4460.
[31] [31] YANG Y, TANG Y, FANG G, et al. Li+ intercalated V2O5·n H2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode[J]. Energy Environ Sci, 2018, 11(11): 3157–3162.
[32] [32] HOU C, WANG J, ZHANG W, et al. Interfacial superassembly of grape-like MnO–Ni@ C frameworks for superior lithium storage[J].ACS Appl Mater Interf, 2020, 12(12): 13770–13780.
[33] [33] XIA C, GUO J, LI P, et al. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode[J]. Angew Chemie Intern Edition, 2018, 57(15): 3943–3948.
[34] [34] LAN B, PENG Z, CHEN L, et al. Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries[J]. J Alloys Comp, 2019, 787: 9–16.
[35] [35] FENG L, WANG K, ZHANG X, et al. Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte[J]. Adv Funct Mater, 2018, 28(4): 1704463.
[36] [36] ZHAO H, PAN L, XING S, et al. Vanadium oxides–reduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance[J]. J Power Sources, 2013, 222:21–31.
[37] [37] CHEN H, LIU T, MOU J, et al. Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors[J].Nano Energy, 2019, 63: 103836.
[38] [38] LI X, KANG B, DONG F, et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2 72 S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy, 2021, 81: 105671.
[39] [39] GU L, WANG J, DING J, et al. W-doped VO2 (B) nanosheets-built 3D networks for fast lithium storage at high temperatures[J]. Electroch Acta, 2019, 295: 393–400.
[40] [40] LI J, LIU X, HAN Q, et al. Formation of WO3 nanotube-based bundles directed by NaHSO4 and its application in water treatment[J]. J Mater Chem A, 2013, 1(4): 1246–1253.
[41] [41] ZHANG Y, ZOU Z, LIU J, et al. Effect of Ga doping on structure and properties of V2O5 lithium-ion batteries[J]. Mater Tech, 2020,35(13/14): 887–895.
[42] [42] XU L, ZHANG Y, ZHENG J, et al. Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries[J]. Mater Today Energy, 2020, 18: 100509.
[43] [43] LIU F, CHEN Z, FANG G, et al. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode[J]. Nano-Micro Lett, 2019, 11(1): 1–11.
[44] [44] MARLEY P M, BANERJEE S. Reversible interconversion of a divalent vanadium bronze between δ and β quasi-1D structures[J].Inorg Chem, 2012, 51(9): 5264–5269.
[45] [45] XIA C, GUO J, LI P, et al. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode[J]. Angew Chem Intn Edi, 2018, 57(15): 3943–3948.
[46] [46] YANG J, YAN B, YE J, et al. Carbon-coated LiCrTiO4 electrode material promoting phase transition to reduce asymmetric polarization for lithium-ion batteries[J]. Phys Chem Chem Phys, 2014, 16(7):2882–2891.
[47] [47] WEI T, LI Q, YANG G, et al. Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts[J]. J Mater Chem A, 2018, 6(41): 20402–20410.
[48] [48] HE P, YAN M, ZHANG G, et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode[J]. Adv Energy Mater, 2017, 7(11):1601920.
[49] [49] ZHANG L, CHEN L, ZHOU X, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system[J]. Adv Energy Mater, 2015, 5(2): 1400930.
[50] [50] LI W, WANG K, CHENG S, et al. A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode[J]. Energy Storage Mater, 2018, 15:14–21.
Get Citation
Copy Citation Text
LI Biaoyang, GAO Lin, ZHANG Lulu, YANG Xuelin. W Doped V2O5 Nanosheets as Cathode Material for High-Performance Aqueous Zinc Ion Battery[J]. Journal of the Chinese Ceramic Society, 2023, 51(7): 1697
Category:
Received: Oct. 21, 2022
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: Biaoyang LI (l_521529@163.com)
CSTR:32186.14.