Frontiers of Optoelectronics, Volume. 17, Issue 4, 36(2024)

Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators

Cheng Huanjie... Lin Guosheng, Xia Di, Luo Liyang, Lu Siqi, Yu Changyuan and Zhang Bin |Show fewer author(s)
References(45)

[1] [1] Picqu, N., Hnsch, T.W.: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019)

[2] [2] Schliesser, A., Picqu, N., Hnsch, T.W.: Mid-infrared frequency combs. Nat. Photonics 6(7), 440–449 (2012)

[3] [3] Kippenberg, T.J., Holzwarth, R., Diddams, S.A.: Microresonator-based optical frequency combs. Science 332(6029), 555–559 (2011)

[4] [4] Gaeta, A.L., Lipson, M., Kippenberg, T.J.: Photonic-chip-based frequency combs. Nat. Photonics 13(3), 158–169 (2019)

[5] [5] Guo, Y., Wang, J., Han, Z., Wada, K., Kimerling, L.C., Agarwal, A.M., Michel, J., Zheng, Z., Li, G., Zhang, L.: Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator. Nanophotonics 7(8), 1461–1467 (2018)

[6] [6] Anashkina, E.A., Marisova, M.P., Sorokin, A.A., Andrianov, A.V.: Numerical simulation of mid-infrared optical frequency comb generation in chalcogenide As2S3 microbubble resonators. Photonics 6(2), 55 (2019)

[7] [7] Lu, S., Lin, G., Xia, D., Wang, Z., Luo, L., Li, Z., Zhang, B.: Broadband mid-infrared frequency comb in integrated chalcogenide microresonator. Photonics 10(6), 628 (2023)

[8] [8] Lin, H., Luo, Z., Gu, T., Kimerling, L.C., Wada, K., Agarwal, A., Hu, J.: Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7(2), 393–420 (2017)

[9] [9] Moille, G., Li, Q., Kim, S., Westly, D., Srinivasan, K.: Phasedlocked two-color single soliton microcombs in dispersion-engineered Si3N4 resonators. Opt. Lett. 43(12), 2772–2775 (2018)

[10] [10] Melchert, O., Willms, S., Morgner, U., Babushkin, I., Demircan, A.: Crossover from two-frequency pulse compounds to escaping solitons. Sci. Rep. 11(1), 11190 (2021)

[11] [11] Melchert, O., Willms, S., Bose, S., Yulin, A., Roth, B., Mitschke, F., Morgner, U., Babushkin, I., Demircan, A.: Soliton molecules with two frequencies. Phys. Rev. Lett. 123(24), 243905 (2019)

[12] [12] Lourdesamy, J.P., Runge, A.F.J., Alexander, T.J., Hudson, D.D., Blanco-Redondo, A., de Sterke, C.M.: Spectrally periodic pulses for enhancement of optical nonlinear effects. Nat. Phys. 18(1), 59–66 (2022)

[13] [13] Luo, R., Liang, H., Lin, Q.: Multicolor cavity soliton. Opt. Express 24(15), 16777–16787 (2016)

[14] [14] Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photonics 5(3), 141–148 (2011)

[15] [15] Petersen, C.R., Mller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, N., Tang, Z., Furniss, D., Seddon, A., Bang, O.: Mid-infrared supercontinuum covering the 1.4–13.3 m molecular fingerprint region using ultrahigh NA chalcogenide step-index fibre. Nat. Photonics 8(11), 830–834 (2014)

[16] [16] Kim, D.G., Han, S., Hwang, J., Do, I.H., Jeong, D., Lim, J.H., Lee, Y.H., Choi, M., Lee, Y.H., Choi, D.Y., Lee, H.: Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nat. Commun. Commun. 11(1), 5933 (2020)

[17] [17] Xia, D., Huang, Y., Zhang, B., Zeng, P., Zhao, J., Yang, Z., Sun, S., Luo, L., Hu, G., Liu, D., Wang, Z., Li, Y., Guo, H., Li, Z.: Engineered Raman lasing in photonic integrated chalcogenide microresonators. Laser Photonics Rev. 16(4), 2100443 (2022)

[18] [18] Xia, D., Yang, Z., Zeng, P., Zhang, B., Wu, J., Wang, Z., Zhao, J., Huang, J., Luo, L., Liu, D., Yang, S., Guo, H., Li, Z.: Integrated chalcogenide photonics for microresonator soliton combs. Laser Photonics Rev. 17(3), 2200219 (2023)

[19] [19] Xia, D., Zhao, J., Cheng, H., Wang, Z., Huang, J., Luo, L., Liu, D., Yang, S., Zhang, B., Li, Z.: Energy dissipation engineering for widely tunable (1.2–2.1 m) optical parametric oscillation in integrated chalcogenide microresonators. Laser Photonics Rev. (2024)

[20] [20] Shen, W., Zeng, P., Yang, Z., Xia, D., Du, J., Zhang, B., Xu, K., He, Z., Li, Z.: Chalcogenide glass photonic integration for improved 2 m optical interconnection. Photon. Res. 8(9), 1484–1490 (2020)

[21] [21] Li, J., Liu, Y., Meng, Y., Xu, K., Du, J., Wang, F., He, Z., Song, Q.: 2 m wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW. IEEE Photonics Technol. Lett. 30(5), 471–474 (2018)

[22] [22] Yu, Y., Gai, X., Ma, P., Vu, K., Yang, Z., Wang, R., Choi, D.Y., Madden, S., Luther-Davies, B.: Experimental demonstration of linearly polarized 2–10 m supercontinuum generation in a chalcogenide rib waveguide. Opt. Lett. 41(5), 958–961 (2016)

[23] [23] Kong, D., Liu, Y., Ren, Z., Jung, Y., Kim, C., Chen, Y., Wheeler, N.V., Petrovich, M.N., Pu, M., Yvind, K., Galili, M., Oxenlwe, L.K., Richardson, D.J., Hu, H.: Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands. Nat. Commun. Commun. 13(1), 4139 (2022)

[24] [24] Xia, D., Huang, Y., Zhang, B., Yang, Z., Zeng, P., Shang, H., Cheng, H., Liu, L., Zhang, M., Zhu, Y., Li, Z.: On-chip broadband mid-infrared supercontinuum generation based on highly nonlinear chalcogenide glass waveguides. Front. Phys. 9, 598091 (2021)

[25] [25] Oreshnikov, I., Melchert, O., Willms, S., Bose, S., Babushkin, I., Demircan, A., Morgner, U., Yulin, A.: Cherenkov radiation and scattering of external dispersive waves by two-color solitons. Phys. Rev. A 106(5), 053514 (2022)

[26] [26] Kim, S., Han, K., Wang, C., Jaramillo-Villegas, J.A., Xue, X., Bao, C., Xuan, Y., Leaird, D.E., Weiner, A.M., Qi, M.: Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun. Commun. 8(1), 372 (2017)

[27] [27] Pan, J., Xia, D., Wang, Z., Zhang, B., Li, Z.: Chalcogenide chip-based frequency combs for advanced laser spectroscopy. J. Lightwave Technol. 41(13), 4065–4078 (2023)

[28] [28] Wang, Z., Luo, L., Xia, D., Lu, S., Lin, G., Gao, S., Li, Z., Zhang, B.: Engineered octave frequency comb in integrated chalcogenide dual-ring microresonators. Front. Photon. 4, 1066993 (2023)

[29] [29] Moille, G., Westly, D., Orji, N.G., Srinivasan, K.: Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion. Appl. Phys. Lett. 119(12), 121103 (2021)

[30] [30] Moille, G., Lu, X., Stone, J., Westly, D., Srinivasan, K.: Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs. Commun. Phys.. Phys. 6(1), 144 (2023)

[31] [31] Pfeiffer, M.H.P., Herkommer, C., Liu, J., Guo, H., Karpov, M., Lucas, E., Zervas, M., Kippenberg, T.J.: Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4(7), 684–691 (2017)

[32] [32] Guo, Y., Jafari, Z., Xu, L., Bao, C., Liao, P., Li, G., Agarwal, A.M., Kimerling, L.C., Michel, J., Willner, A.E., Zhang, L.: Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photon. Res. 7(11), 1279–1286 (2019)

[33] [33] Weng, H., Liu, J., Afridi, A.A., Li, J., Dai, J., Ma, X., Zhang, Y., Lu, Q., Donegan, J.F., Guo, W.: Directly accessing octavespanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photon. Res. 9(7), 1351–1357 (2021)

[34] [34] Gu, J., Li, X., Qi, K., Pu, K., Li, Z., Zhang, F., Li, T., Xie, Z., Xiao, M., Jiang, X.: Octave-spanning soliton microcomb in silica microdisk resonators. Opt. Lett. 48(5), 1100–1103 (2023)

[35] [35] Song, Y., Hu, Y., Zhu, X., Yang, K., Loncar, M.: Octave-spanning Kerr soliton microcombs on thin-film lithium niobate. arXiv preprint arXiv:2403.01107.(2024)

[36] [36] Luke, K., Okawachi, Y., Lamont, M.R., Gaeta, A.L., Lipson, M.: Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40(21), 4823–4826 (2015)

[37] [37] Moille, G., Westly, D., Srinivasan, K.: Broadband visible wavelength microcomb generation in silicon nitride microrings through air-clad dispersion engineering. arXiv preprint arXiv:2404.01577 (2024)

[38] [38] Coen, S., Randle, H.G., Sylvestre, T., Erkintalo, M.: Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Opt. Lett. 38(1), 37–39 (2013)

[39] [39] Anderson, M.H., Weng, W., Lihachev, G., Tikan, A., Liu, J., Kippenberg, T.J.: Zero dispersion Kerr solitons in optical microresonators. Nat. Commun. Commun. 13(1), 4764 (2022)

[40] [40] Yu, M., Okawachi, Y., Griffith, A.G., Lipson, M., Gaeta, A.L.: Modelocked mid-infrared frequency combs in a silicon microresonator. Optica 3(8), 854–860 (2016)

[41] [41] Wang, W., Ming, X., Shi, L., Ma, K., Ren, D., Sun, Q., Wang, L., Zhang, W.: Broadband mid-infrared frequency comb generation in a large-cross-section silicon microresonator. IEEE Photonics J. 15(3), 1–6 (2023)

[42] [42] Zhang, L., Bao, C., Singh, V., Mu, J., Yang, C., Agarwal, A.M., Kimerling, L.C., Michel, J.: Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator. Opt. Lett. 38(23), 5122–5125 (2013)

[43] [43] Coddington, I., Swann, W.C., Newbury, N.R.: Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100(1), 013902 (2008)

[44] [44] Bernhardt, B., Ozawa, A., Jacquet, P., Jacquey, M., Kobayashi, Y., Udem, T., Holzwarth, R., Guelachvili, G., Hnsch, T.W., Picqu, N.: Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4(1), 55–57 (2010)

[45] [45] Ycas, G., Giorgetta, F.R., Baumann, E., Coddington, I., Herman, D., Diddams, S.A., Newbury, N.R.: High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 m. Nat. Photonics 12(4), 202–208 (2018)

Tools

Get Citation

Copy Citation Text

Cheng Huanjie, Lin Guosheng, Xia Di, Luo Liyang, Lu Siqi, Yu Changyuan, Zhang Bin. Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators[J]. Frontiers of Optoelectronics, 2024, 17(4): 36

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: RESEARCH ARTICLE

Received: Jul. 31, 2024

Accepted: Feb. 28, 2025

Published Online: Feb. 28, 2025

The Author Email:

DOI:10.1007/s12200-024-00139-x

Topics