Journal of the Chinese Ceramic Society, Volume. 50, Issue 9, 2538(2022)

Development on Synthesis of Dendritic Mesoporous Silica Nanoparticles

BAO Yan1...2,*, WU Yupeng1,3 and GAO Lu1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(72)

    [1] [1] KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359(6397): 710-712.

    [2] [2] GHAFERI M, ESFAHANI M K M, RAZA A, et al. Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances[J]. J Drug Targeting, 2021, 29(2): 131-154.

    [3] [3] BAO Y, WANG T, KANG Q L, et al. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane[J]. Sci Rep, 2017, 7: 1-14.

    [4] [4] BAO Y, ZHANG Y X, LIU P, et al. Novel fabrication of stable Pickering emulsion and latex by hollow silica nanoparticles[J]. J Colloid Interf Sci, 2019, 553: 83-90.

    [5] [5] YANG B, CHEN Y, SHI J. Mesoporous silica/organosilica nanoparticles: synthesis, biological effect and biomedical application[J]. Mater Sci Eng R, 2019, 137: 66-105.

    [6] [6] LIU J, QIAO S Z, HU Q H, et al. Magnetic nanocomposites with mesoporous structures: synthesis and applications[J]. Small, 2011, 7(4): 425-443.

    [7] [7] XUAN M, SHAO J, ZHAO J, et al. Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: applications in cancer therapy[J]. Angew Chem Int Ed, 2018, 57(21): 6049-6053.

    [8] [8] HE H, MENG X, YUE Q, et al. Thiol-ene click chemistry synthesis of a novel magnetic mesoporous silica/chitosan composite for selective Hg(II) capture and high catalytic activity of spent Hg(II) adsorbent[J]. Chem Eng J, 2021, 405: 126743.

    [9] [9] WANG Y, DU X, LIU Z, et al. Dendritic fibrous nano-particles (DFNPs): rising stars of mesoporous materials[J]. J Mater Chem A, 2019, 7(10): 5111-5152.

    [10] [10] KNEZEVIC N Z, DURAND J O. Large pore mesoporous silica nanomaterials for application in delivery of biomolecules[J]. Nanoscale, 2015, 7(6): 2199-2209.

    [11] [11] DU X, QIAO S Z. Dendritic silica particles with center-radial pore channels: promising platforms for catalysis and biomedical applications[J]. Small, 2015, 11(4): 392-413.

    [12] [12] DU X, HE J H. Spherical silica micro/nanomaterials with hierarchical structures: Synthesis and applications[J]. Nanoscale, 2011, 3(10): 3984-4002.

    [13] [13] MOLLER K, BEIN T. Talented mesoporous silica nanoparticles[J]. Chem Mater, 2017, 29(1): 371-388.

    [14] [14] PENG J, LIU J, LIU J, et al. Fabrication of core-shell structured mesoporous silica nanospheres with dually oriented mesochannels through pore engineering[J]. J Mater Chem A, 2014, 2(21): 8118-8125.

    [15] [15] YANG F, SKRIPKA A, TABATABAEI M S, et al. Magnetic photoluminescent nanoplatform built from large-pore mesoporous silica[J]. Chem Mater, 2019, 31(9): 3201-3210.

    [16] [16] SHABAN M, HASANZADEH M. Biomedical applications of dendritic fibrous nanosilica (DFNS): recent progress and challenges[J]. RSC Adv, 2020, 10(61): 37116-37133.

    [17] [17] SHAFIEI N, NASROLLAHZADEH M, IRAVANI S. Green synthesis of silica and silicon nanoparticles and their biomedical and catalytic applications[J]. Comments Inorg Chem, 2021, 41(6): 317-372.

    [18] [18] CHENG Y, JIAO X, FAN W, et al. Controllable synthesis of versatile mesoporous organosilica nanoparticles as precision cancer theranostics[J]. Biomaterials, 2020, 256: 120191.

    [19] [19] JAMBHRUNKAR M, YANG Y, YU M, et al. Pristine large pore benzene-bridged mesoporous organosilica nanoparticles as an adjuvant and co-delivery platform for eliciting potent antitumor immunity[J]. Mater Today Adv, 2020, 6: 100069.

    [20] [20] YOU C, WU H, ZHANG R, et al. Dendritic mesoporous organosilica nanoparticles: A pH-triggered autocatalytic fenton reaction system with self-supplied H2O2 for generation of high levels of reactive oxygen species[J]. Langmuir, 2020, 36(19): 5262-5270.

    [21] [21] KALANTARI M, YU M H, JAMBHRUNKAR M, et al. Designed synthesis of organosilica nanoparticles for enzymatic biodiesel production[J]. Mater Chem Front, 2018, 2(7): 1334-1342.

    [22] [22] LIU Y, HUANG B, ZHU J, et al. Dual-generation dendritic mesoporous silica nanoparticles for co-delivery and kinetically sequential drug release[J]. RSC Adv, 2018, 8(71): 40598-40610.

    [23] [23] DAVIS M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891): 813-821.

    [24] [24] RYOO R. Birth of a class of nanomaterial[J]. Nature, 2019, 575(7781): 40-41.

    [25] [25] WANG Y, ZHANG B, DING X, et al. Dendritic mesoporous organosilica nanoparticles (DMONs): Chemical composition, structural architecture, and promising applications[J]. Nano Today, 2021, 39: 101231.

    [26] [26] TENG Z, LI W, TANG Y, et al. Mesoporous organosilica hollow nanoparticles: synthesis and applications[J]. Adv Mater, 2019, 31(38): 1707612.

    [27] [27] HAO P, PENG B, SHAN B, et al. Comprehensive understanding of the synthesis and formation mechanism of dendritic mesoporous silica nanospheres[J]. Nanoscale Adv, 2020, 2(5): 1792-1810.

    [28] [28] MAITY A, POLSHETTIWAR V. Dendritic fibrous nanosilica for oatalysis, energy harvesting, carbon dioxide mitigation, drug delivery, and sensing[J]. ChemSusChem, 2017, 10(20): 3866-3913.

    [29] [29] TENG Z, WANG S, SU X, et al. Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels[J]. Adv Mater, 2014, 26(22): 3741-3747.

    [30] [30] YANG Y, BERNARDI S, SONG H, et al. Anion assisted synthesis of large pore hollow dendritic mesoporous organosilica nanoparticles: understanding the composition gradient[J]. Chem Mater, 2016, 28(3): 704-707.

    [31] [31] TENG Z, SU X, ZHENG Y, et al. A facile multi-interface transformation approach to monodisperse multiple-shelled periodic mesoporous organosilica hollow spheres[J]. J Am Chem Soc, 2015, 137(24): 7935-7944.

    [32] [32] WEI Y, LI X, ELZATAHRY A A, et al. A versatile in situ etching-growth strategy for synthesis of yolk-shell structured periodic mesoporous organosilica nanocomposites[J]. RSC Adv, 2016, 6(56): 51470-51479.

    [33] [33] WANG W, WANG P, TANG X, et al. Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular Internalization[J]. ACS Cent Sci, 2017, 3(8): 839-846.

    [34] [34] FU J, JIAO J, SONG H, et al. Fractal-in-a-sphere: confined self-assembly of fractal silica nanoparticles[J]. Chem Mater, 2019, 32(1): 341-347.

    [35] [35] GAO J, KONG W, ZHOU L, et al. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization[J]. Chem Eng J, 2017, 309: 70-79.

    [36] [36] LIU Y, XU J, DENG H H, et al. A surfactant-free microemulsion composed of isopentyl acetate, n-propanol, and water[J]. RSC Adv, 2018, 8(3): 1371-1377.

    [37] [37] ZEMB T N, KLOSSEK M, LOPIAN T, et al. How to explain microemulsions formed by solvent mixtures without conventional surfactants[J]. Proc Natl Acad Sci USA, 2016, 113(16): 4260-4265.

    [38] [38] CHEN Z, PENG B, XU J Q, et al. A non-surfactant self-templating strategy for mesoporous silica nanospheres: beyond the Stober method[J]. Nanoscale, 2020, 12(6): 3657-3662.

    [39] [39] SHENG Y, ZENG H C. Monodisperse aluminosilicate spheres with tunable Al/Si ratio and hierarchical macro-meso-microporous structure[J]. ACS Appl Mater Interfaces, 2015, 7(24): 13578-13589.

    [40] [40] YAMADA H, UJIIE H, URATA C, et al. A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology[J]. Nanoscale, 2015, 7(46): 19557-19567.

    [41] [41] LIANG Q M, HU Q, MIAO G H, et al. A facile synthesis of novel mesoporous bioactive glass nanoparticles with various morphologies and tunable mesostructure by sacrificial liquid template method[J]. Mater Lett, 2015, 148: 45-49.

    [42] [42] MIN Y, YANG K G, LIANG Z, et al. Dandelion-like core-shell silica microspheres with hierarchical pores[J]. RSC Adv, 2015, 5(33): 26269-26272.

    [43] [43] LIM S W, JANG H G, SIM H I, et al. Preparation of dandelion-type silica spheres and their application as catalyst supports[J]. J Porous Mater, 2014, 21(5): 797-809.

    [44] [44] ZHANG A, GU L, HOU K, et al. Mesostructure-tunable and size-controllable hierarchical porous silica nanospheres synthesized by aldehyde-modified Stber method[J]. RSC Adv, 2015, 5(72): 58355-58362.

    [45] [45] DANG M, LI W, ZHENG Y, et al. Mesoporous organosilica nanoparticles with large radial pores via an assembly-reconstruction process in bi-phase[J]. J Mater Chem B, 2017, 5(14): 2625-2634.

    [46] [46] SHEN D, YANG J, LI X, et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres[J]. Nano Lett, 2014, 14(2): 923-932.

    [48] [48] SHAN B, XING J, YANG T, et al. One-pot co-condensation strategy for dendritic mesoporous organosilica nanospheres with fine size and morphology control[J]. CrystEngComm, 2019, 21(27): 4030-4035.

    [49] [49] SAITO H, NISHIO Y, KOBAYASHI M, et al. Hydrolysis behavior of a precursor for bridged polysilsesquioxane 1,4-bis (triethoxysilyl) benzene: a 29Si NMR study[J]. J Sol-Gel Sci Technol, 2011, 57(1): 51-56.

    [50] [50] LIU P, YU Y, PENG B, et al. A dual-templating strategy for the scale-up synthesis of dendritic mesoporous silica nanospheres[J]. Green Chem, 2017, 19(23): 5575-5581.

    [51] [51] KALANTARI M, LIU Y, STROUNINA E, et al. Superhydrophobic dendritic mesoporous organosilica nano-particles with ultrahigh- content of gradient organic moieties[J]. J Mater Chem A, 2018, 6(36): 17579-17586.

    [52] [52] CHEN H, LIU H, WANG R, et al. Size-controllable synthesis of dendritic porous silica as reinforcing fillers for dental composites[J]. Dent Mater, 2021, 37(6): 961-971.

    [53] [53] XIA H, WANG J, CHEN G, et al. One-pot synthesis of SiO2@SiO2 core-shell microspheres with controllable mesopore size as a new stationary phase for fast HPLC separation of alkyl benzenes and β-agonists[J]. Microchim Acta, 2019, 186(2): 125.

    [54] [54] XIA H, WAN G, CHEN G, et al. Preparation of superficially porous core-shell silica particle with controllable mesopore by a dual-templating approach for fast HPLC of small molecules[J]. Mater Lett, 2017, 192: 5-8.

    [55] [55] PENG B, ZONG Y, NIE M, et al. Interfacial charge shielding directs the synthesis of dendritic mesoporous silica nanospheres by a dual-templating approach[J]. New J Chem, 2019, 43(39): 15777-15784.

    [56] [56] WANG Y, SONG H, YU M, et al. Room temperature synthesis of dendritic mesoporous silica nanoparticles with small sizes and enhanced mRNA delivery performance[J]. J Mater Chem B, 2018, 6(24): 4089-4095.

    [57] [57] WANG Y, SONG H, YANG Y, et al. Kinetically controlled dendritic mesoporous silica nanoparticles: from dahlia-to pomegranate-like structures by micelle filling[J]. Chem Mater, 2018, 30(16): 5770-5776.

    [58] [58] HUANG M, LIU L, WANG S, et al. Dendritic mesoporous silica nanospheres synthesized by a novel dual-templating micelle system for the preparation of functional nanomaterials[J]. Langmuir, 2017, 33(2): 519-526.

    [59] [59] WANG Y, NOR Y A, SONG H, et al. Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery[J]. J Mater Chem B, 2016, 4(15): 2646-2653.

    [60] [60] YU Y J, XING J L, PANG J L, et al. Facile synthesis of size controllable dendritic mesoporous silica nanoparticles[J]. ACS Appl Mater Interfaces, 2014, 6(24): 22655-22665.

    [61] [61] GUO Z, WU L, WANG Y, et al. Design of dendritic large-pore mesoporous silica nanoparticles with controlled structure and formation mechanism in dual-templating strategy[J]. ACS Appl Mater Interfaces, 2020, 12(16): 18823-18832.

    [62] [62] KWON D, CHA B G, CHO Y, et al. Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4[J]. Nano Lett, 2017, 17(5): 2747-2756.

    [63] [63] REN D, XU J, CHEN N, et al. Controlled synthesis of mesoporous silica nanoparticles with tunable architectures via oil-water microemulsion assembly process[J]. Colloids Surf A, 2021, 611: 125773.

    [64] [64] YAMAMOTO E, MORI S, SHIMOJIMA A, et al. Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method[J]. Nanoscale, 2017, 9(7): 2464-2470.

    [65] [65] LIU W, MA N, LI S, et al. A one-step method for pore expansion and enlargement of hollow cavity of hollow periodic mesoporous organosilica spheres[J]. J Mater Sci, 2016, 52(5): 2868-2878.

    [66] [66] SUN Y, ZHANG C, MAO Y, et al. General microemulsion synthesis of organic-inorganic hybrid hollow mesoporous silica spheres with enlarged pore size[J]. New J Chem, 2019, 43(28): 11164-11170.

    [67] [67] DAI Y, YANG D, YU D, et al. Engineering of monodisperse core-shell up-conversion dendritic mesoporous silica nanocomposites with a tunable pore size[J]. Nanoscale, 2020, 12(8): 5075-5083.

    [68] [68] CHEN A, MA X, CAI W, et al. Polystyrene-supported dendritic mesoporous silica hybrid core/shell particles: controlled synthesis and their pore size-dependent polishing behavior[J]. J Mater Sci, 2019, 55(2): 577-590.

    [69] [69] BAYAL N, BALJEET S, SINGH R, et al. Size and fiber density controlled synthesis of fibrous nanosilica spheres (KCC-1)[J]. Sci Rep, 2016, 6(1): 1-11.

    [70] [70] SHI Y, FU J, YANG Y. Effects of synthetic routes on the compositional and structural properties of dendritic mesoporous organosilica nanoparticles: The unexpected reversed “double-edged sword” role of reaction time[J]. Microporous Mesoporous Mater, 2020, 294: 109914.

    [71] [71] SEN D, MAITY A, BAHADUR J, et al. Unravelling the structural hierarchy in microemulsion droplet templated dendritic fibrous nano silica[J]. Microporous Mesoporous Mater, 2021, 323: 111234.

    [72] [72] LUO J, ZHANG M, YANG Y, et al. Synthesis of dendritic mesoporous organosilica nanoparticles under a mild acidic condition with homogeneous wall structure and near-neutral surface[J]. Chem Commun, 2021, 57(36): 4416-4419.

    [73] [73] DU X, LI X, HUANG H, et al. Dendrimer-like hybrid particles with tunable hierarchical pores[J]. Nanoscale, 2015, 7(14): 6173-6184.

    Tools

    Get Citation

    Copy Citation Text

    BAO Yan, WU Yupeng, GAO Lu. Development on Synthesis of Dendritic Mesoporous Silica Nanoparticles[J]. Journal of the Chinese Ceramic Society, 2022, 50(9): 2538

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 24, 2021

    Accepted: --

    Published Online: Jan. 3, 2023

    The Author Email: Yan BAO (baoyan@sust.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20211007

    Topics