Laser & Optoelectronics Progress, Volume. 60, Issue 17, 1700006(2023)

Progress of Mid-Infrared Laser

Naijun Cheng1,2,3,4, Weifan Li2,3,4, and Feng Qi1,2,3,4、*
Author Affiliations
  • 1School of Electronic Information Engineering, Shenyang Aerospace University, Shenyang 110136, Liaoning , China
  • 2Key Laboratory of Opto-Electronic Information Processing, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169, Liaoning , China
  • 3Key Laboratory of Liaoning Province in Terahertz Imaging and Sensing, Shenyang 110169, Liaoning , China
  • 4Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, Liaoning , China
  • show less
    Figures & Tables(27)
    Structure diagram of combustion-driven continuous wave HF/DF chemical laser[6]
    System composition of an electrically excited chemical laser[6]
    HBr laser output spectrum and laser output power curve[10]
    Diagram of fiber gas laser based on population inversion[16]
    Single-pass configuration experiment of fiber acetylene gas CW laser output[20]. (a) Diagram of experimental setup; (b) output laser power as a function of absorbed pump powers at different pressures
    Experiment of OPO pumping CO2-filled silver plating capillary[21]. (a) Diagram of experimental setup; (b) output spectrum and energy level transition principle
    Output characteristics of fiber acetylene gas laser[24]. (a) Laser output spectra under different signal powers at 300 Pa pressure; (b) signal power versus pump power at 300 Pa pressure with output light field shown in inset
    Schematic diagrams of energy level transitions of Tm3+, Ho3+ and Er3+(from left to right)[29]
    Overall experimental scheme[36]. (a) Energy level diagram of GSA and ESA dual-wavelength pumped scheme; (b) experimental arrangement for GSA and ESA dual-wavelength pumped Tm3+∶YAP laser
    Configuration of tunable multi-wavelength Ho3+ doped fiber laser[49]
    Diagrams of side-pumped Er3+∶YSGG slab laser; (a) Top view; (b) side view[52]
    Schematic diagram of 140 W Cr2+∶ZnSe laser system[67]
    Joule level Fe2+∶ZnSe mid-IR laser pumped by Er3+∶YAG lasers[69]
    30.6 mJ, Fe2+∶ZnSe mid-IR laser pumped by HF laser operating at room temperature[70]
    Schematic diagram of band structure of quantum cascade laser
    Schematic diagram of experimental apparatus for polarization beam combination[86]
    Schematic diagram of conversion process under several nonlinear frequencies[87]
    Schematic diagram of violet jade laser pumped AgGaS2 and GaSe MIR-DFG[89]
    Schematic diagram of MIR source based on ps-laser pumped BaGa4Se7 crystal[94]
    Schematic diagram of CW MIR source based on BaGa4Se7-DFG[96]
    PPLN-OPO structure diagram[100]
    MgO∶PPLN-OPO experimental apparatus[104]
    Experiment of mid-infrared laser source based on ZnGeP2-OPO; (a) Tm3+-doped fiber+Ho3+∶YAG rod pumped ZGP-OPO mid-infrared laser[109]; (b) based on Rb∶PPKTP pumped mid-infrared ZnGeP2-OPO[111]
    • Table 1. Research progress of HCF based on population inversion [16]

      View table

      Table 1. Research progress of HCF based on population inversion [16]

      Pump sourcePump wavelength /nmGas gain mediumLaser wavelength /μmMaximum laser energy or powerEfficiency /%
      OPO1521C2H23.12, 3.166 nJ1
      OPO1521C2H23.12, 3.16600 nJ27
      OPA1532.8C2H23.11, 3.17550 nJ20
      OPA1530C2H23.11, 3.171.41 μJ20
      Diode laser1530C2H23.12, 3.160.8 nJ30
      Diode laser1530C2H23.08-3.182.5 mW6.7
      Diode laser1530C2H23.12, 3.161.12 W33.2
      Diode laser1530-1535C2H23.09-3.210.6 μJ16
      0.77 W(CW)13
      OPO2002.5CO24.30, 4.37100 μJ20
      TDFA2000.6CO24.30, 4.3980 mW19.3
      OPA1541.3HCN3.09, 3.1556 nJ0.02
      Nd∶Vanadate532I21.31, 1.338 mW4
      OPO1517N2O4.59, 4.66150 nJ9
      ElectrodesHe∶Xe(5∶1)3.11, 3.37, 3.51
    • Table 2. Tuning range and width of Tm3+ doped laser with different substrates[30]

      View table

      Table 2. Tuning range and width of Tm3+ doped laser with different substrates[30]

      Gain materialTuning range /μmTuning width /nm
      Tm3+∶YAG1.87-2.16290
      Tm3+∶YSGG1.84-2.14300
      Tm3+∶YALO31.93-2.0070
      Tm3+∶Y2O31.93-2.09160
      Tm3+∶Sc2O31.93-2.16230
      Tm3+∶Silica fiber1.86-2.09230
      Tm3+∶YLE1.91-2.07160
      Tm3+∶GdVO41.86-1.99130
      Tm3+∶Silica fiber1.72-1.97250
      Tm3+∶BaY2F81.78-2.03245
    • Table 3. Research progress of Tm3+ solid-state laser

      View table

      Table 3. Research progress of Tm3+ solid-state laser

      MaterialWavelength /μmOutput powerYearReference
      Tm3+∶YAP1.988344 mW201032
      Tm3+∶YAG2.0138 mW201233
      Tm3+∶LSO2.0540.65 W201334
      Tm3+∶YAG2.07267 W201435
    • Table 4. Optical properties of some infrared nonlinear crystals[87]

      View table

      Table 4. Optical properties of some infrared nonlinear crystals[87]

      CrystalTransmittance rang /μmEnergy gap /eVNonlinear coefficient /(pm·V-1Damage threshold /(MW·cm-2
      AgGaS20.47-132.76d36=12.6@10.634(1.06 μm,15 ns)
      ZnGeP20.74-122.00d36=75@10.6100(2.1 μm,10 ns)
      GaSe0.62-201.72d22=54.4@10.630(1.06 μm,10 ns)
      CdSe0.75-252.20d31=18@10.650(2.36 μm,35 ns)
      BaGa4S70.35-13.73.54d31=5.1@2.26264(1.06 μm,14 ns)
      BaGa4Se70.47-182.64d23=14.2@1.06100(1.06 μm,14 ns)
      QPM-GaAs0.85-18.51.42d14=86@10.6200(1.06 μm,5 ns)
    Tools

    Get Citation

    Copy Citation Text

    Naijun Cheng, Weifan Li, Feng Qi. Progress of Mid-Infrared Laser[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Feb. 8, 2022

    Accepted: Jun. 13, 2022

    Published Online: Aug. 29, 2023

    The Author Email: Qi Feng (qifeng@sia.cn)

    DOI:10.3788/LOP220922

    Topics