High Power Laser Science and Engineering, Volume. 7, Issue 3, 03000e38(2019)

Advanced fuel layering in line-moving, high-gain direct-drive cryogenic targets

I. V. Aleksandrova and E. R. Koresheva
Author Affiliations
  • Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia
  • show less
    Figures & Tables(21)
    A high-gain direct-drive target design proposed for a 1.3 MJ KrF laser[7].
    The phase state of $\text{D}_{2}$ fuel in the BODNER-Target upon cooling down. (a) PVT-diagram ($T_{\text{S}}$ is the temperature of fuel separation into the liquid and vapor phases). (b) Fuel state in the shell just before the FST layering versus the initial target temperature $T_{\text{in}}$: (1) gaseous fuel ($T_{\text{in}}>T_{\text{CP}}=38.34$ K), (2) compressed liquid ($36.5~\text{K}\sim T_{\text{S}}, $12.5~\text{atm}), (3) liquid $+$ vapor ($18.73~\text{K}=T_{\text{TP}}, $P atm).
    The FST layering method provides rapid symmetrization and freezing of solid ultrafine fuel layers. (a) Schematic of the FST layering module. (b) Target before layering (‘liquid $+$ vapor’ fuel state). (c) Target after FST layering (uniform solid layer). (d) Single-spiral LC (1) in the working assembly. (e) Single-spiral LC (1) shown with magnification. (f) Double-spiral LC.
    The gas pressure in the shell versus the fuel density near the critical point for (a) $\text{D}_{2}$ and (b) D–T.
    Depressurization temperature in the case of the BODNER-Target for $\text{D}_{2}$, $\text{T}_{2}$ and D–T.
    Dynamical layer symmetrization during FST layering: (a) schematic of the target rolling along the LC; (b) $T_{\text{in}}=21$ K and (c) $T_{\text{in}}=15$ K show the influence of $T_{\text{in}}$ on the layer uniformity. Both targets have the same parameters. But in case (c) during target rolling the liquid $\text{H}_{2}$ begins to spread onto the inner shell surface, and as $T_{\text{in}}=15$ K is close to $T_{\text{TP}}=13.96$ K for $\text{H}_{2}$, then quick freezing has begun before the achievement of layer uniformity.
    The relative radius of a vapor bubble ($\unicode[STIX]{x1D6FC}$) under the BODNER-Target cooling (filled with $\text{D}_{2}$ up to 1100 atm at room temperature); $\unicode[STIX]{x0394}T_{\text{max}}$ and $\unicode[STIX]{x0394}T_{\text{work}}$ are the maximum and working temperature ranges for uniform layering ($T_{\text{S}}=36.5$ K, $T_{\text{d}}=27.5$ K).
    Cooling time of several thin metal overcoats for different target designs ($\varnothing$ – diameter, $W$ – cryogenic layer thickness).
    $\text{H}_{2}$–liquid–vapor interface behavior (meniscus) for $\unicode[STIX]{x1D703}\leqslant 1$ (1, vapor; 2, liquid). In (a), with $\unicode[STIX]{x1D703}=0.69$ (polystyrene shell, $\varnothing =940~\unicode[STIX]{x03BC}\text{m}$, fill pressure $P_{\text{f}}=305$ atm at 300 K), the meniscus varies typically. In (b), with $\unicode[STIX]{x1D703}=0.91$ ($\varnothing =949~\unicode[STIX]{x03BC}\text{m}$, $P_{\text{f}}=445$ atm), near the critical density for $\text{H}_{2}$, the meniscus varies greatly, from strongly concave downwards at $T=14$ K to almost flat at $T=33$ K (a flat meniscus indicates the same material properties on both sides of the meniscus when approaching the critical point).
    $\text{H}_{2}$–liquid–vapor interface behavior for $\unicode[STIX]{x1D703}>1$ (1, vapor; 2, liquid). (a) $\unicode[STIX]{x1D703}=1.32$ (polystyrene shell, $\varnothing =980~\unicode[STIX]{x03BC}\text{m}$, $P_{\text{f}}=765$ atm); (b) $\unicode[STIX]{x1D703}=1.6$ (superdurable glass shell, $\varnothing =250~\unicode[STIX]{x03BC}\text{m}$, $P_{\text{f}}=1100$ atm).
    A variety of IFE target designs can be balanced by a corresponding choice of the LC design.
    A standard case of LC winding. The difficulty in designing TrCs arises from the need to have smooth target travel along the LC to avoid sudden changes in the acceleration.
    • Table 1. Parameters of the BODNER-Target for both $\text{D}_{2}$ and D–T fuel.

      View table
      View in Article

      Table 1. Parameters of the BODNER-Target for both $\text{D}_{2}$ and D–T fuel.

      Parameters valuesD–T values
      Target mass${\sim}$3.5 mg${\sim}$4.4 mg
      Shell mass$160.5~\unicode[STIX]{x03BC}\text{g}$$160.5~\unicode[STIX]{x03BC}\text{g}$
      – compact polymer$51.2~\unicode[STIX]{x03BC}\text{g}$$51.2~\unicode[STIX]{x03BC}\text{g}$
      – porous polymer$109.3~\unicode[STIX]{x03BC}\text{g}$$109.3~\unicode[STIX]{x03BC}\text{g}$
      Fuel mass3.3 mg 4.2 mg
      – in-porous fuel2.1 mg 2.7 mg
      – pure solid fuel1.2 mg 1.5 mg
      – vapor fuel$6.3~\unicode[STIX]{x03BC}\text{g}$$4.24~\unicode[STIX]{x03BC}\text{g}$
      Fill density, $\unicode[STIX]{x1D70C}_{\text{f}}$${\sim}107~\text{mg}/\text{cm}^{3}$${\sim}136~\text{mg}/\text{cm}^{3}$
      Fill pressure, $P_{\text{f}}$${\sim}$1100 atm${\sim}$1100 atm
    • Table 2. Critical parameters (density, pressure, temperature) for the hydrogen isotopes[13].

      View table
      View in Article

      Table 2. Critical parameters (density, pressure, temperature) for the hydrogen isotopes[13].

      Hydrogen isotopesD–T
      $\unicode[STIX]{x1D70C}_{\text{CP}}$, $\text{mg}/\text{cm}^{3}$30.1069.80108.9787.10
      $P_{\text{CP}}$, atm12.9816.4318.2617.50
      $T_{\text{CP}}$, K33.1938.3440.4439.42
    • Table 3. Pressure and temperature for the hydrogen isotopes at the boiling and triple points[13].

      View table
      View in Article

      Table 3. Pressure and temperature for the hydrogen isotopes at the boiling and triple points[13].

      Hydrogen isotopesD–T
      $T_{\text{BP}}$, K20.3923.6625.0424.38
      $P_{\text{BP}}$, atm1.01.01.01.0
      $T_{\text{TP}}$, K13.9618.7320.6219.79
      $P_{\text{TP}}$, atm0.070.170.210.19
    • Table 4. Required tensile strength near the critical point temperature.

      View table
      View in Article

      Table 4. Required tensile strength near the critical point temperature.

      TargetPressureTensile strength
      temperature$\text{D}_{2}$D–T$\text{D}_{2}$D–T
      45.00 K47.68 atm44.94 atm${\sim}$4654 MPa${\sim}$4368 MPa
      40.00 K28.96 atm25.89 atm${\sim}$2826 MPa${\sim}$2527 MPa
      38.34 K ($\text{D}_{2}$)22.74 atm – ${\sim}$2219 MPa – 
      39.42 K (D–T)  – 23.99 atm – ${\sim}$2341 MPa
    • Table 5. The BODNER-Target layering time.

      View table
      View in Article

      Table 5. The BODNER-Target layering time.

      $\text{D}_{2}$ fuel
      Layering time$\unicode[STIX]{x1D70F}_{\text{Liquid}}$$\unicode[STIX]{x1D70F}_{\text{Solid}}$$\unicode[STIX]{x1D70F}_{\text{Cool}}$$\unicode[STIX]{x1D70F}_{\text{Form}}$ ($\unicode[STIX]{x1D712}_{\text{g}}$)$\unicode[STIX]{x1D70F}_{\text{Form}}$ ($\unicode[STIX]{x1D712}_{\text{eff}}$)
      Stage 1
      (a) $T_{\text{in}}=T_{\text{S}}\sim 35.0$  K17.48 s – (a) 22.45 sless than
      (b) $T_{\text{in}}=T_{\text{d}}=27.5$  K7.08 s(b) 12.05 s0.5 s
      Stage 2
      $T_{\text{TP}}=18.71$  K – 4.97 s – 
      D–T fuel
      Layering time$\unicode[STIX]{x1D70F}_{\text{Liquid}}$$\unicode[STIX]{x1D70F}_{\text{Solid}}$$\unicode[STIX]{x1D70F}_{\text{Cool}}$$\unicode[STIX]{x1D70F}_{\text{Form}}$ ($\unicode[STIX]{x1D712}_{\text{g}}$)$\unicode[STIX]{x1D70F}_{\text{Form}}$ ($\unicode[STIX]{x1D712}_{\text{eff}}$)
      Stage 1
      (a) $T_{\text{in}}=T_{\text{S}}\sim 37.5$  K22.14 s –  – (a) 28.52 sless than
      (b) $T_{\text{in}}=T_{\text{d}}=28.0$  K7.87 s(b) 14.25 s0.5 s
      Stage 2
      $T_{\text{TP}}=19.79$  K – 5.23 s – 
      Stage 3
      $T_{\text{Cool}}=18.3$  K –  – 1.15 s
    • Table 6. Double-spiral LC (mockup testing results).

      View table
      View in Article

      Table 6. Double-spiral LC (mockup testing results).

      SpecificationsValues Specifications Values
      Spiral number$n=2$Total number of turns$\unicode[STIX]{x1D714}=44$
      Spiral diameter$\text{OD}=42$  mmTube diameter$\text{ID}=4.4$  mm, $\text{OD}=6$  mm
      Spiral height$H=450$  mmLength of each spiral$L_{n}=2261$  mm
      Spiral angle$\unicode[STIX]{x1D6FC}=11.5^{\circ }$Residence time (PS shell)a$\unicode[STIX]{x1D70F}_{\text{Res}}=23.5$  s ($\unicode[STIX]{x1D70F}_{\text{Form}}=22.45$  s for $\text{D}_{2}$)
    • Table 7. Three-fold-spiral LC (mockup testing results).

      View table
      View in Article

      Table 7. Three-fold-spiral LC (mockup testing results).

      Specifications #1Values Specifications #1 Values
      Spiral number$n=3$Total number of turns$\unicode[STIX]{x1D714}=77$
      Spiral diameter$\text{OD}=42$  mmTube diameter$\text{ID}=4.4$  mm, $\text{OD}=6$  mm
      Spiral height$H=880$  mmLength of each spiral$L_{n}=3066$  mm
      Spiral angle$\unicode[STIX]{x1D6FC}=16.7^{\circ }$Residence time (CH shell)a$\unicode[STIX]{x1D70F}_{\text{Res}}>35$  s ($\unicode[STIX]{x1D70F}_{\text{Form}}=28.52$  s for D–T)
    • Table 8. Combined three-fold-spiral LC.

      View table
      View in Article

      Table 8. Combined three-fold-spiral LC.

      Specifications #2Values
      Radius of Spiral 4 21 mm
      Length of Spiral 42.070 m
      Total length of Spiral 3 $+$ Spiral 45.136 m
      Angle of Spiral 4$\unicode[STIX]{x1D6FC}=3^{\circ }$
      Height of Spiral 410.8 cm
    • Table 9. Existence time of the liquid phase at different temperatures $T_{\text{in}}$.

      View table
      View in Article

      Table 9. Existence time of the liquid phase at different temperatures $T_{\text{in}}$.

      ExperimentCalculation
      #LC
      121 KCylinder8 s7.22 s 2.97 s
      215 KCylinder8 s5.13 s 0.97 s
    Tools

    Get Citation

    Copy Citation Text

    I. V. Aleksandrova, E. R. Koresheva. Advanced fuel layering in line-moving, high-gain direct-drive cryogenic targets[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e38

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 5, 2019

    Accepted: May. 21, 2019

    Posted: May. 22, 2019

    Published Online: Jul. 8, 2019

    The Author Email: E. R. Koresheva (elena.koresheva@gmail.com)

    DOI:10.1017/hpl.2019.23

    Topics