Journal of the Chinese Ceramic Society, Volume. 52, Issue 5, 1739(2024)
Research Progress on Ni2+-Activated Ultra-Broadband Near-Infrared Emission Glass-Ceramics
[1] [1] FENG X, LIN L T, DUAN R, et al. Transition metal ion activated near-infrared luminescent materials[J]. Prog Mater Sci, 2022, 129: 100973.
[2] [2] CORMIER L, ZHOU S. Transition metals as optically active dopants in glass-ceramics[J]. Appl Phys Lett, 2020, 116(26): 260503.
[3] [3] LIU X F, ZHOU J J, ZHOU S F, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Prog Mater Sci, 2018, 97: 38-96.
[4] [4] TANABE Y, SUGANO S. On the absorption spectra of complex ions. I[J]. J Phys Soc Jpn, 1954, 9(5): 753-766.
[5] [5] TANABE Y, SUGANO S. On the absorption spectra of complex ions II[J]. J Phys Soc Jpn, 1954, 9(5): 766-779.
[6] [6] JOHNSON L F, DIETZ R E, GUGGENHEIM H J. Optical maser oscillation from Ni2+ in MgF2 involving simultaneous emission of phonons[J]. Phys Rev Lett, 1963, 11(7): 318-320.
[7] [7] JOHNSON L F, GUGGENHEIM H J, THOMAS R A. Phonon-terminated optical masers[J]. Phys Rev, 1966, 149(1): 179-185.
[8] [8] MOULTON P F, MOORADIAN A. Broadly tunable cw operation of Ni?: ?MgF2 and Co?: ?MgF2 lasers[J]. Appl Phys Lett, 1979, 35(11): 838-840.
[9] [9] MOULTON P. Pulse-pumped operation of divalent transition-metal lasers[J]. IEEE J Quantum Electron, 1982, 18(8): 1185-1188.
[10] [10] JOHNSON L F, GUGGENHEIM H J, BAHNCK D, et al. Phonon-terminated laser emission from Ni2+ ions in KMgF3[J]. Opt Lett, 1983, 8(7): 371-373.
[11] [11] JOHNSON B C, MOULTON P F, MOORADIAN A. Mode-locked operation of Co: MgF2 and Ni: MgF2 lasers[J]. Opt Lett, 1984, 9(4): 116-118.
[12] [12] KULESHOV N V, SHCHERBITSKY V G, MIKHAILOV V P, et al. Spectroscopy and excited-state absorption of Ni2+-doped MgAl2O4[J]. J Lumin, 1997, 71(4): 265-268.
[13] [13] MONCORGE R, BENYATTOU T, VIVIEN D, et al. Ni2+ doped LaMgAl11O19: a potential vibronic laser system near 1.1 μm[J]. J Lumin, 1986, 35(4): 199-206.
[14] [14] MONCORGE R, THERY J, VIVIEN D. Enhancement of fluorescence from octahedrally coordinated Ni2+ in LaMgAl11O19 materials by Al3+/Ga3+ ion substitution[J]. J Lumin, 1989, 43(3): 167-172.
[15] [15] Takenobu Suzuki, Ganapathy Senthil Murugan and Yasutake Ohishi, Spectroscopic properties of a novel near-infrared tunable laser material Ni:MgGa2O4[J]. J Lumin, 2005, 113, 265-270.
[16] [16] SUZUKI Y, SIBLEY W A, OH E B, et al. Optical properties of transition-metal ions in zirconium-based metal fluoride glasses and MgF2 crystals[J]. Phys Rev B Condens Matter, 1987, 35(9): 4472-4482.
[17] [17] SUZUKI T, MURUGAN G S, OHISHI Y. Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals[J]. Appl Phys Lett, 2005, 86(13): 131903.
[18] [18] ZHOU S F, DONG H F, FENG G F, et al. Broadband optical amplification in silicate glass-ceramic containing beta-Ga2O3: Ni2+ nanocrystals[J]. Opt Express, 2007, 15(9): 5477-5481.
[19] [19] ZHOU S F, DONG H F, ZENG H P, et al. Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics[J]. J Appl Phys, 2007, 102(6): 063106.
[20] [20] WU B T, ZHOU S F, QIU J R, et al. Transparent Ni2+-doped MgO-Al2 O3-SiO2 glass ceramics with broadband infrared luminescence[J]. Chin Phys Lett, 2006, 23(10): 2778-2781.
[21] [21] WU B T, RUAN J A, REN J J, et al. Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals[J]. Appl Phys Lett, 2008, 92(4): 041110.
[22] [22] WU B T, ZHOU S F, RUAN J, et al. Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals[J]. Opt Express, 2008, 16(4): 2508-2513.
[23] [23] WU B T, RUAN J A, QIU J R, et al. Enhanced broadband near-infrared luminescence from Ni in Bi/Ni-doped transparent glass ceramics[J]. J Phys D: Appl Phys, 2009, 42(13): 135110.
[24] [24] WU B T, ZHOU S F, RUAN J A, et al. Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics[J]. Opt Express, 2008, 16(3): 1879.
[25] [25] ZHOU S F, JIANG N, DONG H F, et al. Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics[J]. Nanotechnology, 2008, 19(1): 015702.
[26] [26] LIN C G, LIU C, ZHAO Z Y, et al. Broadband near-IR emission from cubic perovskite KZnF3: Ni2+ nanocrystals embedded glass-ceramics[J]. Opt Lett, 2015, 40(22): 5263-5266.
[27] [27] LIN C G, LI L G, DAI S X, et al. Oxyfluoride glass-ceramics for transition metal ion based photonics: broadband near-IR luminescence of nickel ion dopant and nanocrystallization mechanism[J]. J Phys Chem C, 2016, 120(8): 4556-4563.
[28] [28] GAO Z G, LIU Y Y, REN J, et al. Selective doping of Ni2+ in highly transparent glass-ceramics containing nano-spinels ZnGa2O4 and Zn1+x Ga2-2xGexO4 for broadband near-infrared fiber amplifiers[J]. Sci Rep, 2017, 7(1): 1783.
[29] [29] ZHANG Y D, LI X B, LAI Z Q, et al. Largest enhancement of broadband near-infrared emission of Ni2+ in transparent nanoglass ceramics: using Nd3+ as a sensitizer and Yb3+ as an energy-transfer bridge[J]. J Phys Chem C, 2019, 123(15): 10021-10027.
[30] [30] GAO Zhigang, XIAO Jing, REN Jing. Laser Optoelectron Prog, 2021, 58(15): 213-228.
[31] [31] ZHOU S F, JIANG N, MIURA K, et al. Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence[J]. J Am Chem Soc, 2010, 132(50): 17945-17952.
[32] [32] GOUTALAND F, JANDER P, BROCKLESBY W S, et al. Crystallisation effects on rare earth dopants in oxyfluoride glass ceramics[J]. Opt Mater, 2003, 22(4): 383-390.
[33] [33] ZHANG R, LIN H, CHEN D Q, et al. Integrated broadband near-infrared luminescence in transparent glass ceramics containing γ-Ga2O3: Ni2+ and β-YF3: Er3+ nanocrystals[J]. J Alloys Compd, 2013, 552: 398-404.
[34] [34] LIN H, ZHANG R, CHEN D Q, et al. Tuning of multicolor emissions in glass ceramics containing γ-Ga2O3 and β-YF3nanocrystals[J]. J Mater Chem C, 2013, 1(9): 1804-1811.
[35] [35] CHEN D Q, WAN Z Y, ZHOU Y, et al. Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors[J]. ACS Appl Mater Interfaces, 2015, 7(34): 19484-19493.
[36] [36] CHEN D Q, WAN Z Y, ZHOU Y. Dual-phase nano-glass-ceramics for optical thermometry[J]. Sens Actuat B Chem, 2016, 226: 14-23.
[37] [37] CHEN D Q, WAN Z Y, LIU S. Highly sensitive dual-phase nanoglass-ceramics self-calibrated optical thermometer[J]. Anal Chem, 2016, 88(7): 4099-4106.
[38] [38] CHEN D Q, LIU S, WAN Z Y, et al. EuF3/Ga2O3 dual-phase nanostructural glass ceramics with Eu2+/Cr3+ dual-activator luminescence for self-calibrated optical thermometry[J]. J Phys Chem C, 2016, 120(38): 21858-21865.
[39] [39] YU Y Z, FANG Z J, MA C S, et al. Mesoscale engineering of photonic glass for tunable luminescence[J]. NPG Asia Mater, 2016, 8(10): e318.
[40] [40] GAO Z G, LU X S, ZHANG Y D, et al. Transmission electron microscopic and optical spectroscopic studies of Ni2+/Yb3+/Er3+/Tm3+ doped dual-phase glass-ceramics[J]. J Am Ceram Soc, 2018, 101(7): 2868-2876.
[41] [41] ZHANG Y D, SUN B C, YANG L, et al. Multi-phase induced ultra-broad 1100-2100?nm emission of Ni2+ in nano-glass composites containing hybrid ZnGa2O4 and ZnF2 nanocrystals[J]. J Eur Ceram Soc, 2020, 40(5): 2229-2233.
[42] [42] GAO Z G, ZHU H B, SUN B C, et al. Photonic engineering of superbroadband near-infrared emission in nanoglass composites containing hybrid metal and dielectric nanocrystals[J]. Photon Res, 2020, 8(5): 698.
[43] [43] GAO Z G, NIU L Y, ZHANG F F, et al. Plasmonic metal enhanced broadband near-infrared emission from a transparent nano-glass composite containing hybrid Ag-metal/γ-Ga2O3: Ni2+ nanocrystals[J]. J Mater Chem C, 2021, 9(44): 15918-15926.
[44] [44] OUYANG Tianchang, DONG Guoping, QIU Jianrong. Laser Optoelectron Prog, 2020, 57(7): 114-122.
[45] [45] CHEN Jianhao, GUO Xiaoping, PAN Qiwen, et al. J Chin Ceram Soc, 2021, 49(8): 1567-1576.
[46] [46] SAMSON B N, PINCKNEY L R, WANG J, et al. Nickel-doped nanocrystalline glass-ceramic fiber[J]. Opt Lett, 2002, 27(15): 1309-1311.
[47] [47] FANG Z J, ZHENG S P, PENG W C, et al. Ni2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment[J]. Opt Express, 2015, 23(22): 28258-28263.
[48] [48] FANG Z J, ZHENG S P, GUAN B O, et al. Laser Optoelectron Prog, 2019, 56(17): 130-139.
[49] [49] ZHANG Yeming, QIU Jianrong. Laser Optoelectron Prog, 2019, 56(17): 11-19.
Get Citation
Copy Citation Text
GAO Zhigang, ZHAO Rui, XIAO Jing, CUI Lugui, WANG Ci, QIAN Sen, REN Jing. Research Progress on Ni2+-Activated Ultra-Broadband Near-Infrared Emission Glass-Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1739
Category:
Received: Sep. 9, 2023
Accepted: --
Published Online: Aug. 20, 2024
The Author Email: XIAO Jing (xiaojingzx@163.com)