Optics and Precision Engineering, Volume. 31, Issue 2, 263(2023)

Gait recognition algorithm in dense occlusion scene

Yi GAO1 and Miao HE2、*
Author Affiliations
  • 1Key Laboratory of Impression Evidence Examination and Identification Technology (Criminal Investigation Police University of China), Ministry of Public Security, People's Republic of China, Shenyang0035, China
  • 2Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang110016, China
  • show less
    Figures & Tables(13)
    Simulation dataset of gait contour in dense occlusion scene
    Output of the data augmentation method based on random binary expansion
    Feature representation redundancy of HPP structure in case of strict spatial alignment
    DHPP structure
    Overall network structure
    • Table 1. Analysis of accuracy benefit of horizontal pyramid pooling with different scales

      View table
      View in Article

      Table 1. Analysis of accuracy benefit of horizontal pyramid pooling with different scales

      网络结构HPP分割数01836547290108126144162180mean
      NMGaitSet1-2481690.897.999.496.993.691.795.097.898.996.885.895.0
      GaitSet1-24891.497.898.697.192.991.093.997.198.396.986.894.7
      GaitSet1-2490.195.697.695.990.890.492.196.596.895.285.293.3
      GaitSet1-289.295.996.994.592.189.192.095.896.293.481.492.4
      GaitSet175.883.187.687.182.178.782.089.186.781.468.382.0
      BGGaitSet1-2481683.891.291.888.883.381.084.190.092.294.579.087.2
      GaitSet1-24882.689.692.588.785.879.284.288.291.991.382.787.0
      GaitSet1-2481.688.691.886.179.273.780.386.490.587.377.383.9
      GaitSet1-278.685.589.286.078.671.474.985.389.686.473.281.7
      GaitSet165.374.280.073.067.959.466.874.480.672.762.470.6
      CLGaitSet1-2481661.475.480.777.372.170.171.573.573.568.450.070.4
      GaitSet1-24862.570.675.672.164.963.265.567.567.064.852.366.0
      GaitSet1-2459.369.474.071.764.063.465.066.867.362.546.564.5
      GaitSet1-251.261.166.063.964.463.362.064.963.156.945.760.2
      GaitSet145.155.262.260.760.051.755.256.454.548.639.753.6
    • Table 2. Gait recognition accuracy of main and auxiliary channels in different scenarios

      View table
      View in Article

      Table 2. Gait recognition accuracy of main and auxiliary channels in different scenarios

      数据集场景通道01836547290108126144162180mean
      CASIA_BNM双通道93.098.499.698.794.092.095.898.499.197.790.096.1
      主通道90.698.799.098.393.691.995.798.398.497.488.595.9
      辅通道93.297.699.698.594.192.395.898.599.198.390.696.5
      BG双通道86.891.593.892.287.782.287.993.395.194.082.089.7
      主通道83.090.393.391.887.081.086.992.494.292.681.489.5
      辅通道86.692.193.892.087.082.587.192.994.494.181.390.3
      CL双通道66.077.480.976.671.067.169.575.077.274.158.772.1
      主通道65.878.582.478.572.668.171.376.377.373.160.473.1
      辅通道63.373.878.774.067.864.768.172.174.972.357.569.7

      遮挡仿真

      数据集

      NM双通道70.084.493.891.385.980.985.989.889.084.866.283.8
      主通道67.681.891.889.984.577.884.890.586.680.863.781.8
      辅通道66.781.189.488.584.979.485.188.286.981.561.781.2
      BG双通道61.974.983.680.572.666.473.282.080.473.256.473.2
      主通道59.071.781.178.972.065.172.678.479.270.955.571.3
      辅通道55.370.680.376.769.562.670.078.076.971.155.269.7
      CL双通道31.952.956.956.256.054.157.360.750.145.633.750.5
      主通道34.453.758.057.756.451.155.660.354.646.331.750.9
      辅通道28.845.451.749.751.948.554.054.945.539.529.645.4
    • Table 3. Performance difference between multi-channel training and single channel training

      View table
      View in Article

      Table 3. Performance difference between multi-channel training and single channel training

      01836547290108126144162180mean
      NM主通道联合90.698.799.098.393.691.995.798.398.497.488.595.5
      主通道裁剪90.097.598.897.993.192.194.898.297.896.085.894.7
      辅通道联合93.297.699.698.594.192.395.898.599.198.390.696.1
      辅通道裁剪91.197.599.097.794.192.394.197.798.196.888.395.2
      BG主通道联合83.090.393.391.887.081.086.992.494.292.681.488.5
      主通道裁剪84.491.093.990.186.880.485.790.593.191.380.087.9
      辅通道联合86.692.193.892.087.082.587.192.994.494.181.389.4
      辅通道裁剪85.191.593.691.086.781.384.991.394.192.480.888.4
      CL主通道联合65.878.582.478.572.668.171.376.377.373.160.473.1
      主通道裁剪65.076.481.379.273.068.769.977.376.970.655.672.2
      辅通道联合63.373.878.774.067.864.768.172.174.972.357.569.7
      辅通道裁剪57.771.977.471.765.567.767.870.673.066.750.967.4
    • Table 4. Performance comparison between the proposed algorithm and the baseline algorithm in dense occlusion simulation dataset

      View table
      View in Article

      Table 4. Performance comparison between the proposed algorithm and the baseline algorithm in dense occlusion simulation dataset

      01836547290108126144162180mean
      NMGaitSet67.082.291.191.084.581.387.390.389.483.564.082.9
      Our85.193.697.596.489.587.191.394.895.392.181.191.3
      BGGaitSet61.975.681.879.471.065.474.881.181.373.258.873.1
      Our82.089.791.587.883.677.181.590.091.389.576.985.5
      CLGaitSet41.953.958.558.560.856.356.859.658.249.335.153.5
      Our56.970.974.873.464.761.165.369.469.768.152.066.0
    • Table 5. Performance comparison of the proposed algorithm and other latest algorithms on Casia-B dataset

      View table
      View in Article

      Table 5. Performance comparison of the proposed algorithm and other latest algorithms on Casia-B dataset

      01836547290108126144162180mean
      NMCNN-3D87.193.297.094.690.288.391.193.896.596.085.792.1
      STGAN---94.6-88.3-93.8---92.2
      Bi-Route87.693.297.396.193.090.392.396.396.694.285.392.9
      ICNet90.897.999.496.993.691.795.097.898.996.885.895.0
      Two-Path88.196.797.896.692.690.593.496.697.395.485.593.7
      GaitSet90.897.999.496.993.691.795.097.898.996.885.895.0
      MBRDNet-----------94.9
      our91.898.399.398.092.490.994.297.398.196.888.495.0
      BGCNN-LB64.280.682.776.964.863.168.076.982.275.461.372.4
      Bi-Route77.588.892.593.686.184.688.392.389.886.678.787.2
      ICNet83.891.291.888.883.381.084.190.092.294.479.087.2
      Two-Path76.485.288.283.978.774.977.885.388.585.576.181.9
      GaitSet83.891.291.888.883.381.084.190.092.294.479.087.2
      MBRDNet-----------88.2
      our89.095.194.691.888.884.188.292.795.193.683.590.6
      CLCNN-LB37.757.266.661.155.254.655.259.158.948.839.454.0
      Bi-Route54.665.669.172.770.669.268.470.566.763.451.365.6
      ICNet61.475.480.777.372.170.171.573.573.568.450.070.4
      Two-Path60.272.076.172.668.868.166.367.668.864.451.867.0
      GaitSet61.475.480.777.372.170.171.573.573.568.450.070.4
      MBRDNet-----------72.1
      our67.981.684.381.674.172.974.375.977.776.860.375.2
    • Table 6. Performance comparison of the proposed algorithm and other algorithms on Casia-C dataset

      View table
      View in Article

      Table 6. Performance comparison of the proposed algorithm and other algorithms on Casia-C dataset

      普通背包快走慢走
      FBC84.6-83.688
      OFCD+PCA+LDA97-8788
      GaitSet10081.39589.2
      our10089.698.897.9
    • Table 7. Ablation experimental results of the proposed algorithm on dense occlusion simulation dataset

      View table
      View in Article

      Table 7. Ablation experimental results of the proposed algorithm on dense occlusion simulation dataset

      CRDT01836547290108126144162180meanDims
      NMGaitSet××××67.082.291.191.084.581.387.390.389.483.564.082.915 872
      our1×××73.985.792.991.886.082.387.093.092.187.667.785.515 872
      our2××80.893.297.595.490.586.490.695.594.490.377.190.215 872
      our3×84.994.197.495.891.289.291.395.195.894.682.292.08 192
      our485.193.697.596.489.587.191.394.895.392.181.191.34 096
      BGGaitSet××××61.975.681.879.471.065.474.881.181.373.258.873.115 872
      our1×××66.481.583.680.576.566.474.281.783.176.561.975.715 872
      our2××78.786.489.885.681.378.582.487.789.586.073.183.515 872
      our3×83.289.592.488.384.378.582.489.692.090.877.386.28 192
      our482.089.791.587.883.677.181.590.091.389.576.985.54 096
      CLGaitSet××××41.953.958.558.560.856.356.859.658.249.335.153.515 872
      our1×××38.755.661.259.460.453.155.860.858.650.131.653.215 872
      our2××53.168.871.570.965.362.564.268.467.559.443.963.215 872
      our3×55.070.672.471.065.662.565.569.969.765.649.665.28 192
      our456.970.974.873.464.761.165.369.469.768.152.066.04 096
    • Table 8. Ablation experimental results of the proposed algorithm on Casia-B dataset

      View table
      View in Article

      Table 8. Ablation experimental results of the proposed algorithm on Casia-B dataset

      CRDT01836547290108126144162180meanDims
      NMGaitSet××××90.897.999.496.993.691.795.097.898.996.885.895.015 872
      our1×××90.398.198.998.392.489.593.697.498.396.585.794.515 872
      our2××90.497.298.596.892.389.393.296.497.296.085.593.915 872
      our3×91.997.899.497.992.791.394.898.198.297.486.795.18 192
      our491.898.399.398.092.490.994.297.398.196.888.495.04 096
      BGGaitSet××××83.891.291.888.883.381.084.190.092.294.579.087.215 872
      our1×××84.891.993.089.185.978.683.290.993.990.479.087.315 872
      our2××88.192.893.890.786.281.985.691.593.292.981.889.015 872
      our3×89.095.794.791.889.184.787.792.695.293.684.490.88 192
      our489.095.194.691.888.884.188.292.795.193.683.590.64 096
      CLGaitSet××××61.475.480.777.372.170.171.573.573.568.450.070.415 872
      our1×××66.178.580.476.871.170.171.474.275.171.757.672.115 872
      our2××67.478.983.080.274.069.571.975.575.371.858.973.315 872
      our3×67.582.285.482.774.470.975.577.978.177.663.175.98 192
      our467.981.684.381.674.172.974.375.977.776.860.375.24 096
    Tools

    Get Citation

    Copy Citation Text

    Yi GAO, Miao HE. Gait recognition algorithm in dense occlusion scene[J]. Optics and Precision Engineering, 2023, 31(2): 263

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Sep. 11, 2022

    Accepted: --

    Published Online: Feb. 9, 2023

    The Author Email: HE Miao (hemiao@sia.cn)

    DOI:10.37188/OPE.20233102.0263

    Topics