Laser & Optoelectronics Progress, Volume. 48, Issue 6, 62701(2011)

Response of Coupling Strength of Quantum Dot-Cavity System to Incoherent Pump

Chen Xiang* and Mi Xianwu
Author Affiliations
  • [in Chinese]
  • show less
    References(29)

    [1] [1] J. I. Cirac, P. Zoller, H. J. Kimble et al.. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Phys. Rev. Lett., 1997, 78(16): 3221~3224

    [2] [2] S. J. van Enk, J. I. Cirac, P. Zoller et al.. Quantum state transfer in a quantum network: aquantum-optical implementation[J]. J. Mod. Opt., 1997, 44(10): 1727~2074

    [3] [3] Zhang Jing. The Interaction between Light and Atom Inside a Micro-Cavity[D]. Taiyuan: Shanxi University, 2008. 6~7

    [4] [4] J. McKeever, A. Boca, A. D. Boozer et al.. Deterministic generation of single photons from one atom trapped in a cavity[J]. Science, 2004, 303(5666): 1992~1994

    [5] [5] J. P. Reithmaier, G. Sek, A. Lffler et al.. Strong coubling in a single quantum dot-semiconductor microcavity[J]. Nature, 2004, 432(7014): 197~200

    [6] [6] T. Yoshie, A. Scherer, J. Hendrickson et al.. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity[J]. Nature, 2004, 432(7014): 200~203

    [7] [7] E. Peter, P. Senellart, D. Martrou et al.. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity[J]. Phys. Rev. Lett., 2005, 95(6): 067401

    [8] [8] J. J. Sanchez-Mondragon, N. B. Narozhny, J. H. Eberly. Theory of spontaneous-emission line shape in an ideal cavity[J]. Phys. Rev. Lett., 1983, 51(7): 550~553

    [9] [9] G. S. Agarwal, R. R. Puri. Exact quantum-eletrondynamics results for scattering, emission, and absorption from a Ryderg atom in a cavity with arbitrary Q[J]. Phys. Rev. A, 1986, 33(3): 1757~1764

    [10] [10] H. J. Carmichael, R. J. Brecha, M. G. Raizen et al.. Subnature linewideaveraging for coupled atomic and cavity-mode oscillators[J]. Phys. Rev. A, 1989, 40(10): 5516~5519

    [11] [11] V. Savona, Z. Hradil, A. Quattropani et al.. Quantum theory of quantum-well polaritons in semiconductor microcavities[J]. Phys. Rev. B, 1994, 49(13): 8874~8879

    [12] [12] L. C. Andreani, G. Panzarini, J. M. Gérard. Strong-coupling regime for quantum boxes in pillar microcavities: Theory[J]. Phys. Rev. B, 1999, 60(19): 13276~13279

    [13] [13] F. P. Laussy, E. D. Valle, C. Tejedor. Luminescence spectra of quantum dots in microcavities. I. Bosons[J]. Phys. Rev. B, 2009, 79(23): 235325

    [14] [14] H. J. Carmichael. Statistical Methods in Quantum Optics 1[M]. Berlin: Spring-Verlag Heidelberg, 1998. 6~8

    [15] [15] F. P. Laussy, E. D. Valle, C. Tejedor. Strong coupling of quantum dots in microcavities[J]. Phys. Rev. Lett., 2008, 101(8): 083601

    [16] [16] Yang Lijun, Zhao Min, Zhang Lianshui et al.. Probing absorption spectrum driven by two strong coupling fields[J]. Laser & Optoelectronics Progress, 2010, 47(5): 3~4

    [17] [17] L. Tian, H. J. Carmichael. Incoherent excitation of the Jaynes-Cummings system[J]. Quantum Opt., 1992, 4(2): 131~144

    [18] [18] Y. Peijun, P. K. Pathak, E. Illes et al.. Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED[J]. Phys. Rev. B, 2010, 81(3): 033309

    [19] [19] A. Laucht, N. Hauke, B. Villas et al.. Dephasing of exciton polaritons in photoexcited InAs nanocavities[J]. Phys. Rev. Lett., 2009, 103(8): 087405

    [20] [20] C. Kistner, K. Morgener, S. Reitzenstein et al.. Strong coupling in a quantum dot micropillar system under electrical current injection[J]. Appl. Phys. Lett., 2010, 96(22): 221102

    [21] [21] M. Nomura, N. Kumagai, S. Iwamoto et al.. Photonic crystal nanocavity laser with a single quantum dot gain[J]. Opt. Express, 2009, 17(18): 15975~15982

    [22] [22] M. Nomura, N. Kumagai, S. Iwamoto et al.. Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system[J]. Nature Physics, 2010, 6(4): 279~283

    [24] [24] Z. G. Xie, S. Gotzing, W. Fang et al.. Influence of a single quantum dot state on the characteristics of a microdisk laser[J]. Phys. Rev. Lett., 2007, 98(11): 117401

    [25] [25] A. Naesby, T. Suhr, P. T. Kristensen et al.. Influence of pure dephasing on emission spectra from single photon sources[J]. Phys. Rev. A, 2008, 78(4): 045802

    [26] [26] M. Winger, T. Volz, G. Tarel et al.. Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system[J]. Phys. Rev. Lett., 2009, 103(20): 207403

    [28] [28] A. Auffèves, D. Gerace, J. M. Gérard et al.. Controlling the dynamics of a coupled atom-cavity system by pure dephasing[J]. Phys. Rev. B, 2010, 81(24): 245419

    [29] [29] M. Lffler, G. M. Meyer, H. Walther. Spectral properties of one-atom laser[J]. Phys. Rev. A, 1997, 55(5): 3923~3930

    Tools

    Get Citation

    Copy Citation Text

    Chen Xiang, Mi Xianwu. Response of Coupling Strength of Quantum Dot-Cavity System to Incoherent Pump[J]. Laser & Optoelectronics Progress, 2011, 48(6): 62701

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Dec. 3, 2010

    Accepted: --

    Published Online: May. 9, 2011

    The Author Email: Xiang Chen (chenxiang2011@hotmail.com)

    DOI:10.3788/lop48.062701

    Topics