International Journal of Extreme Manufacturing, Volume. 5, Issue 2, 22002(2023)
Will high-entropy carbides and borides be enabling materials for extreme environments?
[1] [1] Zhang Y W, Zhao S J, Weber W J, Nordlund K, Granberg F and Djurabekova F 2017 Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys Curr. Opin. Solid State Mater. Sci. 21 221–37
[2] [2] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K and Lu Z P 2014 Microstructures and properties of high-entropy alloys Prog. Mater. Sci. 61 1–93
[3] [3] Tsai M H and Yeh J W 2014 High-entropy alloys: a critical review Mater. Res. Lett. 2 107–23
[4] [4] Kumar N A P K, Li C, Leonard K J, Bei H and Zinkle S J 2016 Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation Acta Mater. 113 230–44
[5] [5] LuYP et al 2019 A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy J. Mater. Sci. Technol. 35 369–73
[6] [6] Jiang B, Wang W, Liu S X, Wang Y, Wang C F, Chen Y N, Xie L, Huang M Y and He J Q 2022 High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics Science 377 208–13
[7] [7] Zhang L, Shi X L, Yang Y L and Chen Z G 2021 Flexible thermoelectric materials and devices: from materials to applications Mater. Today 46 62–108
[8] [8] Jiang B B et al 2021 High-entropy-stabilized chalcogenides with high thermoelectric performance Science 371 830–4
[9] [9] Bérardan D, Franger S, Dragoe D, Meena A K and Dragoe N 2016 Colossal dielectric constant in high entropy oxides Phys. Status Solidi 10 328–33
[10] [10] Bérardan D, Franger S, Meena A K and Dragoe N 2016 Room temperature lithium superionic conductivity in high entropy oxides J. Mater. Chem. 4 9536–41
[11] [11] Gild J, Zhang Y Y, Harrington T, Jiang S C, Hu T, Quinn M C, Mellor W M, Zhou N X, Vecchio K and Luo J 2016 High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics Sci. Rep. 6 37946
[12] [12] Gild J, Kaufmann K, Vecchio K and Luo J 2019 Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics Scr. Mater. 170 106–10
[13] [13] Yan X L, Constantin L, Lu Y F, Silvain J F, Nastasi M and Cui B 2018 (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity J. Am. Ceram. Soc. 101 4486–91
[14] [14] Zhou J Y, Zhang J Y, Zhang F, Niu B, Lei L W and Wang W M 2018 High-entropy carbide: a novel class of multicomponent ceramics Ceram. Int. 44 22014–8
[15] [15] Jin T, Sang X H, Unocic R R, Kinch R T, Liu X F, Hu J, Liu H L and Dai S 2018 Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy Adv. Mater. 30 1707512
[16] [16] Liu L, Zhang L Q and Liu D 2020 Complete elimination of pest oxidation by high entropy refractory metallic silicide (Mo0.2W0.2Cr0.2Ta0.2Nb0.2)Si2 Scr. Mater. 189 25–29
[17] [17] QinY,WangJC,LiuJX,WeiXF,LiF,ZhangGJ,JingCX, Zhao J W and Wu H Z 2020 High-entropy silicide ceramics developed from (TiZrNbMoW)Si2 formulation doped with aluminum J. Eur. Ceram. Soc. 40 2752–9
[18] [18] QinY, LiuJX,LiF, WeiXF, Wu HandZhangGJ2019A high entropy silicide by reactive spark plasma sintering J. Adv. Ceram. 8 148–52
[19] [19] Gild J, Braun J, Kaufmann K, Marin E, Harrington T, Hopkins P, Vecchio K and Luo J 2019 A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2 J. Mater. 5 337–43
[20] [20] Tang X C, Thompson G B, Ma K K and Weinberger C R 2022 The role of entropy and enthalpy in high entropy carbides Comput. Mater. Sci. 210 111474
[21] [21] Wright A J, Wang Q Y, Huang C Y, Nieto A, Chen R K and Luo J 2020 From high-entropy ceramics to compositionally-complex ceramics: a case study of fluorite oxides J. Eur. Ceram. Soc. 40 2120–9
[22] [22] Wright A J and Luo J 2020 A step forward from high-entropy ceramics to compositionally complex ceramics: a new perspective J. Mater. Sci. 55 9812–27
[23] [23] Ye BL,Wen TQ,HuangKH,WangCZandChuYH2019 First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic J. Am. Ceram. Soc. 102 4344–52
[24] [24] Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S and Maria J P 2015 Entropy-stabilized oxides Nat. Commun. 6 8485
[25] [25] Castle E, Csanádi T, Grasso S, Dusza J and Reece M 2018 Processing and properties of high-entropy ultra-high 2018 High-entropy high-hardness metal carbides discovered by entropy descriptors Nat. Commun. 9 4980
[26] [26] Ye B L, Wen T Q and Chu Y H 2020 High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air J. Am. Ceram. Soc. 103 500–7
[27] [27] Ye B L, Wen T Q, Liu D and Chu Y H 2019 Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air Corros. Sci. 153 327–32
[28] [28] Tan YQ,ChenC,LiSG,HanXC,XueJX,LiuT, Zhou X S and Zhang H B 2020 Oxidation behaviours of high-entropy transition metal carbides in 1200 .C water vapor J. Alloys Compd. 816 152523
[29] [29] Xiang H, Xing Y, Dai F, Wang H and Su L 2021 High-entropy ceramics: present status, challenges, and a look forward J. Adv. Ceram. 10 385–441
[30] [30] Pangilinan L E, Turner C L, Akopov G, Anderson M, Mohammadi R and Kaner R B 2018 Superhard tungsten diboride-based solid solutions Inorg. Chem. 57 15305–13
[31] [31] Fahrenholtz W G, Hilmas G E and Li R X 2020 Densification of ultra-refractory transition metal diboride ceramics Sci. Sinter. 52 1–14
[32] [32] Ye BL,Wen TQ,NguyenMC,HaoLY, WangCZand Chu Y H 2019 First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics Acta Mater. 170 15–23
[33] [33] Wang F, Yan X L, Shao L, Nastasi M and Cui B 2019 Irradiation damage behavior in novel high-entropy carbide ceramics Trans. Am. Nucl. Soc. 120 327
[34] [34] Harrington T J et al 2019 Phase stability and mechanical properties of novel high entropy transition metal carbides Acta Mater. 166 271–80
[35] [35] Moskovskikh D O, Vorotilo S, Sedegov A S, Kuskov K V, Bardasova K V, Kiryukhantsev-Korneev P V, Zhukovskyi M and Mukasyan A S 2020 High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering Ceram. Int. 46 19008–14
[36] [36] Liu D Q, Zhang A J, Jia J G, Meng J H and Su B 2020 Phase evolution and properties of (VNbTaMoW)C high entropy carbide prepared by reaction synthesis J. Eur. Ceram. Soc. 40 2746–51 temperature carbides Sci. Rep. 8 8609
[37] [37] Barbarossa S, Orr `u R, Garroni S, Licheri R and Cao G 2021
[38] [38] Sarkar A, Wang Q S, Schiele A, Chellali M R, Ultra high temperature high-entropy borides: effect of Bhattacharya S S, Wang D, Brezesinski T, Hahn H, graphite addition on oxides removal and densification Velasco L and Breitung B 2019 High-entropy oxides: behaviour Ceram. Int. 47 6220–31 fundamental aspects and electrochemical properties Adv. `
[39] [39] Tallarita G, Licheri R, Garroni S, Orru R and Cao G 2019 Mater. 31 1806236 Novel processing route for the fabrication of bulk
[40] [40] Albedwawi S H, AlJaberi A, Haidemenopoulos G N and high-entropy metal diborides Scr. Mater. 158 100–4 Polychronopoulou K 2021 High entropy oxides-exploring
[41] [41] Tallarita G, Licheri R, Garroni S, Barbarossa S, Orr a paradigm of promising catalysts: a review Mater. Des. 202 109534
[42] [42] Kurlov A S and Gusev A I 2006 Tungsten carbides and W-C phase diagram Inorg. Mater. 42 121–7
[43] [43] Wang F, Zhang X, Yan X, Lu Y, Nastasi M, Chen Y and Cui B 2020 The effect of submicron grain size on thermal stability and mechanical properties of high-entropy carbide ceramics J. Am. Ceram. Soc. 103 4463–72
[44] [44] Demirskyi D, Borodianska H, Suzuki T S, Sakka Y, Yoshimi K and Vasylkiv O 2019 High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC Scr. Mater. 164 12–16
[45] [45] Yang Y, Wang W, Gan G Y, Shi X F and Tang B Y 2018 Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: ab initio investigation Physica B 550 163–70
[46] [46] Sarker P, Harrington T, Toher C, Oses C, Samiee M, Maria J P, Brenner D W, Vecchio K S and Curtarolo S `u R and Cao G 2020 High-entropy transition metal diborides by reactive and non-reactive spark plasma sintering: a comparative investigation J. Eur. Ceram. Soc. 40 942–52
[47] [47] Zhang Y, Guo W M, Jiang Z B, Zhu Q Q, Sun S K, You Y, Plucknett K and Lin H T 2019 Dense high-entropy boride ceramics with ultra-high hardness Scr. Mater. 164 135–9
[48] [48] GuJF, ZouJ,SunSK,WangH,Yu SY, ZhangJY, Wang W M and Fu Z Y 2019 Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach Sci. China Mater. 62 1898–909
[49] [49] Feng L, Fahrenholtz W G and Hilmas G E 2020 Processing of dense high-entropy boride ceramics J. Eur. Ceram. Soc. 40 3815–23
[50] [50] Gild J et al 2020 Thermal conductivity and hardness of three single-phase high-entropy metal diborides fabricated by borocarbothermal reduction and spark plasma sintering Ceram. Int. 46 6906–13
[51] [51] WeiXF, LiuJX,LiF, QinY, LiangYCandZhangGJ 2019 High entropy carbide ceramics from different starting materials J. Eur. Ceram. Soc. 39 2989–94
[52] [52] WeiXF, QinY, LiuJX,LiF, LiangYCandZhangGJ 2020 Gradient microstructure development and grain growth inhibition in high-entropy carbide ceramics prepared by reactive spark plasma sintering J. Eur. Ceram. Soc. 40 935–41
[53] [53] Monteverde F and Saraga F 2020 Entropy stabilized single-phase (Hf, Nb, Ta, Ti, Zr)B2 solid solution powders obtained via carbo/boro-thermal reduction J. Alloys Compd. 824 153930
[54] [54] Monteverde F, Saraga F and Gaboardi M 2020 Compositional disorder and sintering of entropy stabilized (Hf, Nb, Ta, Ti, Zr)B2 solid solution powders J. Eur. Ceram. Soc. 40 3807–14
[55] [55] Zhang X, Li N, Chen X, Stroup M, Lu Y F and Cui B 2023 Direct selective laser sintering of high-entropy carbide ceramics J. Mater. Res. 38 187–97
[56] [56] Munir Z A, Anselmi-Tamburini U and Ohyanagi M 2006 The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method J. Mater. Sci. 41 763–77
[57] [57] Feng L, Lee S H and Kim H N 2017 Effects of high-energy ball milling and reactive spark plasma sintering on the densification of HfC-SiC composites J. Eur. Ceram. Soc. 37 1891–8
[58] [58] MaMD,Ye BL,HanYJ,SunL,HeJLandChuYH2020 High-pressure sintering of ultrafine-grained high-entropy diboride ceramics J. Am. Ceram. Soc. 103 6655–8
[59] [59] MaMD,SunYN,Wu YJ,ZhaoZS,Ye LandChuYH 2022 Nanocrystalline high-entropy carbide ceramics with improved mechanical properties J. Am. Ceram. Soc. 105 606–13
[60] [60] LiuSY, ZhangSX,LiuSY, LiDJ,LiYPandWangSW 2021 Phase stability, mechanical properties and melting points of high-entropy quaternary metal carbides from first-principles J. Eur. Ceram. Soc. 41 6267–74
[61] [61] Quinn G D and Bradt R C 2007 On the Vickers indentation fracture toughness test J. Am. Ceram. Soc. 90 673–80
[62] [62] Nisar A, Zhang C, Boesl B and Agarwal A 2020 A perspective on challenges and opportunities in developing high entropy-ultra high temperature ceramics Ceram. Int. 46 25845–53
[63] [63] Feng L, Fahrenholtz W G and Brenner D W 2021 High-entropy ultra-high-temperature borides and carbides: a new class of materials for extreme environments Annu. Rev. Mater. Res 51 165–85
[64] [64] ZhangY, JiangZB,SunSK,GuoWM,ChenQS,QiuJX, Plucknett K and Lin H T 2019 Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction J. Eur. Ceram. Soc. 39 3920–4
[65] [65] QiaoLJ,LiuY, GaoY, BiJQ,LiYH,LiuC,GaoJ, Wang W L and Qian Z 2022 First-principles prediction, fabrication and characterization of (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 high-entropy borides Ceram. Int. 48 17234–45
[66] [66] LiuJX,ShenXQ,Wu Y, LiF, LiangYCandZhangGJ 2020 Mechanical properties of hot-pressed high-entropy diboride-based ceramics J. Adv. Ceram. 9 503–10
[67] [67] Murchie A C, Watts J L, Fahrenholtz W G and Hilmas G E 2022 Room-temperature mechanical properties of a high-entropy diboride Int. J. Appl. Ceram. Technol. 19 2293–9
[68] [68] Rost C M, Rak Z, Brenner D W and Maria J P 2017 Local structure of the MgxNixCoxCuxZnxO(x = 0.2) entropy-stabilized oxide: an EXAFS study J. Am. Ceram. Soc. 100 2732–8
[69] [69] Wang Y C, Csanádi T, Zhang H F, Dusza J, Reece M J and Zhang R Z 2020 Enhanced hardness in high-entropy carbides through atomic randomness Adv. Theory Simul. 3 2000111
[70] [70] Hossain M D, Lowum S, Borman T and Maria J P 2021 Fermi level engineering and mechanical properties of high entropy carbides (arXiv: 2101.04885)
[71] [71] Feng L, Chen W T, Fahrenholtz W G and Hilmas G E 2021 Strength of single-phase high-entropy carbide ceramics up to 2300 .C J. Am. Ceram. Soc. 104 419–27
[72] [72] Demirskyi D, Suzuki T S, Yoshimi K and Vasylkiv O 2020 Synthesis and high-temperature properties of medium-entropy (Ti, Ta, Zr, Nb)C using the spark plasma consolidation of carbide powders Open Ceram. 2 100015
[73] [73] Miracle D B and Lipsitt H A 1983 Mechanical properties of fine-grained substoichiomebic titanium carbide J. Am. Ceram. Soc. 66 592–7
[74] [74] Katz A P, Lipsitt H A, Mah T and Mendiratta M G 1983 Mechanical behaviour of polycrystalline TiC J. Mater. Sci. 18 1983–92
[75] [75] Silvestroni L, Bellosi A, Melandri C, Sciti D, Liu J X and Zhang G J 2011 Microstructure and properties of HfC and TaC-based ceramics obtained by ultrafine powder J. Eur. Ceram. Soc. 31 619–27
[76] [76] Kelly A and Rowcliffe D J 1967 Deformation of poly crystalline transition metal carbides J. Am. Ceram. Soc. 50 253–6
[77] [77] ZhangPX,Ye L,ChenFH,HanWJ,Wu YHandZhaoT 2022 Stability, mechanical, and thermodynamic behaviors of (TiZrHfTaM)C (M = Nb,Mo,W,V,Cr) high-entropy carbide ceramics J. Alloys Compd. 903 163868
[78] [78] Wang Y C 2022 Processing and properties of high entropy carbides Adv. Appl. Ceram. 121 57–78
[79] [79] Monteverde F, Gaboardi M, Saraga F, Feng L, Fahrenholtz W and Hilmas G 2022 Anisotropic thermal expansion in high-entropy multicomponent AlB2-type diboride solid solutions Int. J. Extrem. Manuf. 5 015505
[80] [80] Rost C M, Borman T, Hossain M D, Lim M, Quiambao-Tomko K F, Tomko J A, Brenner D W, Maria J P and Hopkins P E 2020 Electron and phonon thermal conductivity in high entropy carbides with variable carbon content Acta Mater. 196 231–9
[81] [81] Dennett C A, Hua Z L, Lang E, Wang F and Cui B 2022 Thermal conductivity reduction in (Zr0.25Ta0.25Nb0.25Ti0.25)C high entropy carbide from extrinsic lattice defects Mater. Res. Lett. 10 611–7
[82] [82] Schwind E C, Reece M J, Castle E, Fahrenholtz W G and Hilmas G E 2022 Thermal and electrical properties of a high entropy carbide (Ta, Hf, Nb, Zr) at elevated temperatures J. Am. Ceram. Soc. 105 4426–34
[83] [83] Zhou Y, Fahrenholtz W G, Graham J and Hilmas G E 2021 From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx J. Mater. Sci. Technol. 82 105–13
[84] [84] Zhao P B et al 2020 A novel high-entropy monoboride (Mo0.2Ta0.2Ni0.2Cr0.2W0.2)B with superhardness and low thermal conductivity Ceram. Int. 46 26626–31
[85] [85] DaiFZ,SunYJ,Wen B,XiangHMandZhouYC2021 Temperature dependent thermal and elastic properties of high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: molecular dynamics simulation by deep learning potential J. Mater. Sci. Technol. 72 8–15
[86] [86] Monteverde F, Saraga F, Gaboardi M and Plaisier J R 2021 Compositional pathways and anisotropic thermal expansion of high-entropy transition metal diborides J. Eur. Ceram. Soc. 41 6255–66
[87] [87] Weaver K D et al 2004 Gas-Cooled Fast Reactor (GFR) FY04 Annual Report (Idaho National Lab: Idaho Falls, ID)
[88] [88] Sawa K and Ueta S 2004 Research and development on HTGR fuel in the HTTR project Nucl. Eng. Des. 233 163–72
[89] [89] Anghaie S and Knight T 2002 Status of advanced carbide fuels: past, present, and future AIP Conf. Proc. 608 852–6
[90] [90] Zheng M J, Szlufarska I and Morgan D 2015 Defect kinetics and resistance to amorphization in zirconium carbide J. Nucl. Mater. 457 343–51
[91] [91] Mu S, Yin J, Samolyuk G D, Wimmer S, Pei Z, Eisenbach M, Mankovsky S, Ebert H and Stocks G M 2019 Hidden Mn magnetic-moment disorder and its influence on the physical properties of medium-entropy NiCoMn solid solution alloys Phys. Rev. Mater. 3 014411
[92] [92] Velis.a G, Wendler E, Zhao S, Jin K, Bei H, Weber W J and Zhang Y 2018 Delayed damage accumulation by athermal suppression of defect production in concentrated solid solution alloys Mater. Res. Lett. 6 136–41
[93] [93] OhHS et al 2019 Engineering atomic-level complexity in high-entropy and complex concentrated alloys Nat. Commun. 10 2090
[94] [94] Ullah R, Artacho E and Correa A A 2018 Core electrons in the electronic stopping of heavy ions Phys. Rev. Lett. 121 116401
[95] [95] Yang T N, Lu C Y, Velisa G, Jin K, Xiu P Y, Crespillo M L, Zhang Y W, Bei H B and Wang L M 2018 Effect of alloying elements on defect evolution in Ni-20X binary alloys Acta Mater. 151 159–68
[96] [96] Fan Z, Zhao S J, Jin K, Chen D, Osetskiy Y N, Wang Y Q, Bei H B, More K L and Zhang Y W 2019 Helium irradiated cavity formation and defect energetics in Ni-based binary single-phase concentrated solid solution alloys Acta Mater. 164 283–92
[97] [97] LuCY et al 2018 Enhanced void swelling in NiCoFeCrPd high-entropy alloy by indentation-induced dislocations Mater. Res. Lett. 6 584–91
[98] [98] Wang F, Yan X L, Wang T Y, Wu Y Q, Shao L, Nastasi M, Lu Y F and Cui B 2020 Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics Acta Mater. 195 739–49
[99] [99] ZhuYB,ChaiJL,WangZG,ShenTL,NiuLJ,LiSF, Jin P, Zhang H P, Li J and Cui M H 2022 Microstructural damage evolution of (WTiVNbTa)C5 high-entropy carbide ceramics induced by self-ions irradiation J. Eur. Ceram. Soc. 42 2567–76
[100] [100] Peng Z, Sun W, Xiong X, Zhang H B, Guo F W and Li J M 2021 Novel refractory high-entropy ceramics: transition metal carbonitrides with superior ablation resistance Corros. Sci. 184 109359
[101] [101] Wuchina E, Opila E, Opeka M, Fahrenholtz W and Talmy I 2007 UHTCs: ultra-high temperature ceramic materials for extreme environment applications Electrochem. Soc. Interface 16 30–36
[102] [102] Lee W E and Rainforth W M 1994 Ceramic Microstructures: Property Control by Processing (Dordrecht: Springer)
[103] [103] Cui B 2011 Microstructural Evolution and Oxidation Behaviour of Spark Plasma Sintered Mn+1AXn Ceramics (London: Imperial College London) (https://doi.org/ 10.25560/9110)
[104] [104] Wang Y C and Reece M J 2021 Oxidation resistance of (Hf-Ta-Zr-Nb)C high entropy carbide powders compared with the component monocarbides and binary carbide powders Scr. Mater. 193 86–90
[105] [105] Wang Y C, Zhang R Z, Zhang B H, Skurikhina O, Balaz P, Araullo-Peters V and Reece M J 2020 The role of multi-elements and interlayer on the oxidation behaviour of (Hf-Ta-Zr-Nb)C high entropy ceramics Corros. Sci. 176 109019
[106] [106] Backman L, Gild J, Luo J and Opila E J 2020 Part II: experimental verification of computationally predicted preferential oxidation of refractory high entropy ultra-high temperature ceramics Acta Mater. 197 81–90
[107] [107] Wang H X, Cao Y J, Liu W and Wang Y G 2020 Oxidation behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C-xSiC ceramics at high temperature Ceram. Int. 46 11160–8
[108] [108] GuoRR,LiZJ,LiL,LiuY, ZhengRXandMaCL2022 Microstructures and oxidation mechanisms of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 high-entropy ceramic J. Eur. Ceram. Soc. 42 2127–34
[109] [109] Wang Y C, Zhang B H, Zhang C Y, Yin J and Reece M J 2022 Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100 .C J. Mater. Sci. Technol. 113 40–47
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese]. Will high-entropy carbides and borides be enabling materials for extreme environments?[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 22002
Category: Topical Review
Received: May. 30, 2022
Accepted: --
Published Online: Jul. 26, 2024
The Author Email: (bcui3@unl.edu)