Electro-Optic Technology Application, Volume. 38, Issue 5, 19(2023)
All-solid-state Single-frequency Continuous-wave Wideband Tunable Titanium Sapphire Laser (Invited)
[1] [1] KUWANMOTO T, HONDA K, TAKAHASHI Y, et al. Magneto-optical trapping of Yb atoms using an intercombination transition[J]. Physics Review A, 1999, 60(2): R745.
[2] [2] XU Z X, WU W Y, TIAN L, et al. Long lifetime and high-fidelity quantum memory of photonics polarizationqubit by lifting Zeeman degeneracy[J]. Physics Review Letters, 2013, 111(5): 240503.
[3] [3] BARBER Z W, HOYT C W, OATEA C W, et al. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice[J]. Physics Review Letters, 2006, 96(8): 083002.
[4] [4] TOMIZAWA H, SATO T, OGAWA K, et al. Stabilization of a high-order harmonic generation seeded extreme ultraviolet free electron laser by time-synchronization control with electro-optic sampling[J]. High Power Laser Science and Engineering, 2015, 3(2): 14-24.
[5] [5] MANDON J, SOROKIN E, SOROKINA I T, et al. Super continua for high-resolution absorption multiplex infrared spectroscopy[J]. Optics Letters, 2008, 33(3): 285-287.
[6] [6] JIA X J, YAN Z H, DUAN Z Y, et al. Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths[J]. Physics Review Letters, 2012, 109(25): 253604.
[7] [7] WOLFGRAMM F, Cerè A, BEDUINI F A, et al. Squeezed-Light optical magnetometry[J]. Physics Review Letters, 2010, 105(5): 053601.
[8] [8] MOULTON P F. Spectroscopic and laser characteristics of Ti:Al2O3[J]. Journal of the Optical Society of American B, 1986, 3(1): 125-133.
[9] [9] SANCHEZ A, FAHEY R E, STRAUSS A J, et al. Room-temperature continuous-wave operation of a Ti:Al2O3 laser[J]. Optics Letters, 1986, 11(6): 363-364.
[10] [10] SCHULZ P A. Single-frequency Ti:Al2O3 ring laser[J]. IEEE Journal of Quantum Electronics, 1988, 24(6): 1039-1044.
[15] [15] MAKER G T, FERGUSON A I. Ti:sapphire laser pumped by a frequency-doubled diode-pumped Nd:YLF laser[J]. Optics Letters, 1990, 15(7): 375-377.
[16] [16] HARRISON J, FINCH A, RINES D M, et al. Low-threshold, cw, all-solid-state Ti:Al2O3 laser[J]. Optics Letters ,1991, 16 (8): 581-583.
[17] [17] http://www.spectra-physics.com/f/matisse-2-tunable-ring-aser.
[18] [18] http://www.coherent.com/lasers/laser/mbr-ring-series.
[19] [19] http://www.m2lasers.com/solstis.html.
[20] [20] http://www.tekhnoscan.com/english/ring_lasers.htm.
[21] [21] JOHNSTON T F, PROFFITT W. Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser[J]. IEEE Journal of Quantum Electronics, 1980, QE-16(4): 483-488.
[22] [22] CHA Y H, KO K H, LIM G, et al. External-cavity frequency doubling of a 5 W 756 nm injection-locked Ti:sapphirelaser[J]. Opt Express, 2008, 16(7): 4866-4871.
[23] [23] WEI Y X, LU H D, JIN P X, et al. Self-injection locked CW single-frequency tunable Ti:sapphire laser[J]. Opt Express, 2017, 25(18): 21379-21387.
[24] [24] XI C, WANG P, LI X, et al. Highly efficient continuous-wave mid-infrared generation based on intracavity difference frequency mixing[J]. High Power Laser Science and Engineering, 2019, 7(5): 67-71.
[25] [25] MANDON J, SOROKIN E, SOROKINA I T, et al. Supercontinua for high-resolution absorption multiplex infrared spectroscopy[J]. Optics Letters, 2008, 33(3): 285-287.
[26] [26] YARBOROUGH J M. CW dye laser emission spanning the visible spectrum[J]. Applied Physics Letters, 1974, 24(12): 629-630.
[27] [27] BLOOM A L. Modes of a laser resonator containing tilted birefringent plates[J]. Journal of the Optical Society of America, 1974, 64(4): 447-452.
[28] [28] HOLTOM G, TESCHKE O. Design of a birefringent filter for high-power dye lasers[J]. IEEE Journal of Quantum Electronics, 1974, 10(8): 577-579.
[29] [29] PREUSS D R, GOLE J L. Three-stage birefringent filter tuning smoothly over the visible region: theoretical treatment and experimental design[J]. Applied Optics, 1980, 19(5): 702-710.
[30] [30] WANG X L, YAO J Q. Transmitted and tuning characteristics of birefringent filters[J]. Applied Optics, 1992, 31(22): 4505-4508.
[31] [31] YARBOROUGH J M. CW dye laser emission spanning the visible spectrum[J]. Applied Physics Letters, 1974, 24(12): 629-630.
[32] [32] WEI J, CAO X C, JIN P X, et al. Realization of compact Watt-level single-frequency continuous-wave self-tuning titanium: sapphire laser[J]. Opt Express, 2021, 29(2): 2679-2689.
[33] [33] FERNANDEZ J, IPARRAGUIRRE I, ARAMBURU I, et al. K5Nd(MoO4)4: a self-tunable laser crystal[J]. Optics Letters, 2003, 28(15): 1341-1343.
[34] [34] FERNANDEZ J, ILLARRAMENDI M A, IPARRAGUIRRE I, et al. Rb5Nd(MoO4)4 a self-tunable birefringent laser crystal[J]. Optics Materials, 2004, 26: 483-487.
[35] [35] ARAMBURU I, IPARRAGUIRRE I, ILLARRAMENDI M A, et al. Self-tuning in birefringent La3Ga5SiO14:Nd3+ laser crystal[J]. Optics Materials, 2005, 27: 1692-1696.
[36] [36] IPARRAGUIRRE I, ARAMBURU I, AZKARGORTA J, et al. Wavelength tuning of Titanium Sapphire laser by its own crystal birefringence[J]. Optics Express, 2005, 13(4): 1254-1259.
[37] [37] IPARRAGUIRRE I, AZKARGORTA J, FERNANDEZ J, et al. A self-tunable Titanium Sapphire laser by rotating a set of parallel plates of active material[J]. Optics Express, 2009, 17(5): 3771-3776.
[38] [38] WEI J, CAO X C, JIN P X, et al. Diving angle optimization of BRF in a single-frequency continuous-wave wideband tunable titanium:sapphire laser[J]. Optics Express, 2021, 29(5): 6714-6725.
[39] [39] LU H D, SUN X J, WANG M H, et al. Single frequency Ti:sapphire laser withcontinuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss[J]. Optics Express, 2017, 22(20): 24551-24558.
[40] [40] MARTIN K I, CLARKSON W A, HANNA D C. Self-suppression of axial mode hopping by intracavity second-harmonic Generation[J]. Optics Letters, 1997, 22(6): 75-377.
[41] [41] LU H D, SU J, ZHENG Y H, et al. Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers[J]. Optics Letters, 2014, 39(5): 1117-1120.
[42] [42] GREENSTEIN S, ROSENBLUH M. The influence of nonlinear spectral bandwidth on single longitudinal mode intra-cavity second harmonic generation[J]. Opt Commum, 2005, 248: 241-248.
[43] [43] CULSHAW W, KANNELAUD J, PETERSON J E. Efficient frequency-doubled single-frequency Nd:YAG laser[J]. IEEE Journal of Quantum Electronics, 1974, QE-10(2): 253-263.
[44] [44] NAGAI H, KUME M, OHTA I, et al. Low-noise operation of a diode pumped intracavity doubled Nd:YAG laser using a Brewster plate[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1164-1168.
[45] [45] SUN X J, WEI J, WANG W Z, et al. Realization of a continuous frequency-tuning Ti:sapphire laser with an intracavity locked etalon[J]. Chinese Optics Letters, 2015, 13(7): 071401.
[46] [46] JIN P X, LU H D, WEI Y X, et al. Single-frequency CW Ti:sapphire laser with intensity noise manipulation and continuous frequency-tuning[J]. Optics Letters, 2017, 42(1): 143-146.
[47] [47] JIN P X, Xie Y J, CAO X C, et al. Modulation-noise-free continuously tunablesingle-frequency CW Ti:Sapphire laser withintracavity-locked birefringent etalon[J]. IEEE Journal of Quantum Electronics, 2022, 58(1): 1700106.
Get Citation
Copy Citation Text
WEI Jiao, JIN Pixian, SU Jing, LU Huadong, PENG Kunchi. All-solid-state Single-frequency Continuous-wave Wideband Tunable Titanium Sapphire Laser (Invited)[J]. Electro-Optic Technology Application, 2023, 38(5): 19
Category:
Received: May. 6, 2022
Accepted: --
Published Online: May. 14, 2024
The Author Email:
CSTR:32186.14.