Acta Optica Sinica, Volume. 42, Issue 20, 2007001(2022)

Low Phase Noise Microwave Signal Generation Based on Soliton Frequency Comb in MgF2 Microresonator

Jian Dai1,2、*, Xinmin Li1,2, Anni Liu1,2, Yinggang Hou1,2, and Kun Xu1,2
Author Affiliations
  • 1School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    References(16)

    [1] Marpaung D, Roeloffzen C, Heideman R et al. Integrated microwave photonics[J]. Laser & Photonics Reviews, 7, 506-538(2013).

    [2] Peter M, Strandberg M W P. Phase stabilization of microwave oscillators[J]. Proceedings of the IRE, 43, 869-873(1955).

    [3] Yao X S, Maleki L. Optoelectronic microwave oscillator[J]. Journal of the Optical Society of America B, 13, 1725-1735(1996).

    [4] Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 369, eaay3676(2020).

    [5] Herr T, Brasch V, Jost J D et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 8, 145-152(2014).

    [6] Liu J Q, Lucas E, Raja A S et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs[J]. Nature Photonics, 14, 486-491(2020).

    [7] Bai Y, Zhang M H, Shi Q et al. Brillouin-Kerr soliton frequency combs in an optical microresonator[J]. Physical Review Letters, 126, 063901(2021).

    [8] Shen Y, Meng L J, Wang M Y et al. Dispersion engineering of magnesium fluoride wedge resonator and numerical analysis for soliton generation[J]. Acta Optica Sinica, 41, 0323001(2021).

    [9] Zhang X L, Zhao Y J. Research progress of microresonator-based optical frequency combs[J]. Acta Optica Sinica, 41, 0823014(2021).

    [10] Wang M Y, Fan L K, Wu L F et al. Research on Kerr optical frequency comb generation based on MgF2 crystalline microresonator with ultra-high-Q factor[J]. Infrared and Laser Engineering, 50, 20210481(2021).

    [11] Yi X, Yang Q F, Yang K Y et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator[J]. Optica, 2, 1078-1085(2015).

    [12] Kippenberg T J, Spillane S M, Vahala K J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity[J]. Physical Review Letters, 93, 083904(2004).

    [13] Coen S, Randle H G, Sylvestre T et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model[J]. Optics Letters, 38, 37-39(2013).

    [14] Herr T, Hartinger K, Riemensberger J et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators[J]. Nature Photonics, 6, 480-487(2012).

    [15] Lecaplain C, Javerzac-Galy C, Gorodetsky M L et al. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials[J]. Nature Communications, 7, 13383(2016).

    [16] Matsko A B, Maleki L. On timing jitter of mode locked Kerr frequency combs[J]. Optics Express, 21, 28862-28876(2013).

    Tools

    Get Citation

    Copy Citation Text

    Jian Dai, Xinmin Li, Anni Liu, Yinggang Hou, Kun Xu. Low Phase Noise Microwave Signal Generation Based on Soliton Frequency Comb in MgF2 Microresonator[J]. Acta Optica Sinica, 2022, 42(20): 2007001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fourier optics and signal processing

    Received: Mar. 9, 2022

    Accepted: Apr. 27, 2022

    Published Online: Oct. 18, 2022

    The Author Email: Dai Jian (daijian@bupt.edu.cn)

    DOI:10.3788/AOS202242.2007001

    Topics