[5] [5] Thanapirom K, Treeprasertsuk S, Soonthornworasiri N, Poovorawan K, Chaiteerakij R, Komolmit P, Phaosawasdi K, Pinzani M. The incidence, etiologies, outcomes, and predictors of mortality of acute liver failure in Thailand: a population-base study. BMC Gastroenterol. 2019;19:18.10.1186/s12876-019-0935-y
[7] [7] Ozden I, Yavru HA, Durmaz O, Orhun G, Salmaslioglu A, Gulluoglu M, Alper A, Ibis C, Serin KR, Onal Z, Ozcan PE, Poyanli A, Hancerli S, Cagatay A, Cantez S, Kaymakoglu S. Complementary roles of cadaveric and living donor liver transplantation in acute liver failure. J Gastrointest Surg. 2021;25:2516.10.1007/s11605-021-04932-3
[9] [9] Kwong A, Kim WR, Lake JR, Smith JM, Schladt DP, Skeans MA, Noreen SM, Foutz J, Miller E, Snyder JJ, Israni AK, Kasiske BL. OPTN/SRTR 2018 annual data report: liver. Am J Transplant. 2020;20:193.10.1111/ajt.15674
[12] [12] Nicolas CT, Kaiser RA, Hickey RD, Allen KL, Du Z, Vanlith CJ, Guthman RM, Amiot B, Suksanpaisan L, Han B, Francipane MG, Cheikhi A, Jiang H, Bansal A, Pandey MK, Garg I, Lowe V, Bhagwate A, Orien D, Kocher JA, Degrado TR, Nyberg SL, Lagasse E, Lillegard JB. Ex vivo cell therapy by ectopic hepatocyte transplantation treats the porcine tyrosinemia model of acute liver failure. Mol Ther Methods Clin Dev. 2020;18:738.10.1016/j.omtm.2020.07.009
[14] [14] Sakai Y, Yamanouchi K, Ohashi K, Koike M, Utoh R, Hasegawa H, Muraoka I, Suematsu T, Soyama A, Hidaka M, Takatsuki M, Kuroki T, Eguchi S. Vascularized subcutaneous human liver tissue from engineered hepatocyte/fibroblast sheets in mice. Biomaterials. 2015;65:66.10.1016/j.biomaterials.2015.06.046
[17] [17] Heydari Z, Najimi M, Mirzaei H, Shpichka A, Ruoss M, Farzaneh Z, Montazeri L, Piryaei A, Timashev P, Gramignoli R, Nussler A, Baharvand H, Vosough M. Tissue engineering in liver regenerative medicine: insights into novel translational technologies. Cells. 2020;9:304.10.3390/cells9020304
[22] [22] Li G, Chen K, You D, Xia M, Li W, Fan S, Chai R, Zhang Y, Li H, Sun S. Laminin-coated electrospun regenerated silk fibroin mats promote neural progenitor cell proliferation, differentiation, and survival in vitro. Front Bioeng Biotechnol. 2019;7:190.10.3389/fbioe.2019.00190
[23] [23] Morelli S, Piscioneri A, Salerno S, De Bartolo L. Hollow fiber and nanofiber membranes in bioartificial liver and neuronal tissue engineering. Cells Tissues Organs. 2022;211:447.
[25] [25] Sarhane KA, Ibrahim Z, Martin R, Krick K, Cashman CR, Tuffaha SH, Broyles JM, Prasad N, Yao ZC, Cooney DS, Mi R, Lee WA, Hoke A, Mao HQ, Brandacher G. Macroporous nanofiber wraps promote axonal regeneration and functional recovery in nerve repair by limiting fibrosis. Acta Biomater. 2019;88:332.10.1016/j.actbio.2019.02.034
[30] [30] Yoon JY, Mandakhbayar N, Hyun J, Yoon DS, Patel KD, Kang K, Shim HS, Lee HH, Lee JH, Leong KW, Kim HW. Chemically-induced osteogenic cells for bone tissue engineering and disease modeling. Biomaterials. 2022;289: 121792.10.1016/j.biomaterials.2022.121792
[32] [32] Zhang X, Li Q, Li L, Ouyang J, Wang T, Chen J, Hu X, Ao Y, Qin D, Zhang L, Xue J, Cheng J, Tao W. Bioinspired mild photothermal effect-reinforced multifunctional fiber scaffolds promote bone regeneration. ACS Nano. 2023;17:6466.10.1021/acsnano.2c11486
[37] [37] Sofi HS, Abdal-Hay A, Rashid R, Rafiq A, Rather S-U, Beigh MA, Alrokayan SH, Khan HA, Tripathi RM, Sheikh FA. Electrospun polyurethane fiber mats coated with fish collagen layer to improve cellular affinity for skin repair. Sustain Mater Technol. 2022;34: e00523.
[39] [39] Yu CH, Wang TR, Diao HC, Liu N, Zhang Y, Jiang HY, Zhao P, Shan ZY, Sun ZW, Wu T, Mo XM, Yu TB. Photothermal-triggered structural change of nanofiber scaffold integrating with graded mineralization to promote tendon-bone healing. Adv Fiber Mater. 2022;4:908.10.1007/s42765-022-00154-7
[42] [42] Slivac I, Zdraveva E, Ivancic F, Zunar B, Holjevac Grguric T, Gaurina Srcek V, Svetec IK, Dolenec T, Bajsic EG, Tominac Trcin M, Mijovic B. Bioactivity comparison of electrospun PCL mats and liver extracellular matrix as scaffolds for HepG2 cells. Polymers. 2021;13:279.10.3390/polym13020279
[45] [45] Navarro-Alvarez N, Soto-Gutierrez A, Chen Y, Caballero-Corbalan J, Hassan W, Kobayashi S, Kondo Y, Iwamuro M, Yamamoto K, Kondo E, Tanaka N, Fox IJ, Kobayashi N. Intramuscular transplantation of engineered hepatic tissue constructs corrects acute and chronic liver failure in mice. J Hepatol. 2010;52:211.10.1016/j.jhep.2009.11.019
[47] [47] Xu LJ, Wang SF, Su X, Wang Y, Su YN, Huang L, Zhang YW, Chen Z, Chen QQ, Du HT, Zhang YP, Yan L. Mesenchymal stem cell-seeded regenerated silk fibroin complex matrices for liver regeneration in an animal model of acute liver failure. ACS Appl Mater Inter. 2017;9:14716.10.1021/acsami.7b02805
[49] [49] Zhang L, Guan Z, Ye JS, Yin YF, Stoltz JF, De Isla N. Research progress in liver tissue engineering. Biomed Mater Eng. 2017;28:S113.
[55] [55] Chan TM, Harn HJ, Lin HP, Chou PW, Chen JY, Ho TJ, Chiou TW, Chuang HM, Chiu SC, Chen YC, Yen SY, Huang MH, Liang BC, Lin SZ. Improved human mesenchymal stem cell isolation. Cell Transplant. 2014;23:399.10.3727/096368914X678292
[56] [56] Wei JJ, Tang L, Chen LL, Xie ZH, Ren Y, Qi HG, Lou JY, Weng GB, Zhang SW. Mesenchymal stem cells attenuates TGF-beta 1-induced EMT by increasing HGF expression in HK-2 cells. Iran J Public Health. 2021;50:908.
[67] [67] Zeng Y, Wu R, Wang F, Li S, Li L, Li Y, Qin P, Wei M, Yang J, Wu J, Chen A, Ke G, Yan Z, Yang H, Chen Z, Wang Z, Xiao W, Jiang Y, Chen X, Zeng Z, Zhao X, Chen P, Gong S. Liberation of daidzein by gut microbial beta-galactosidase suppresses acetaminophen-induced hepatotoxicity in mice. Cell Host Microbe. 2023;31:766.10.1016/j.chom.2023.04.002
[71] [71] Kim JD, Cho EJ, Ahn C, Park SK, Choi JY, Lee HC, Kim DY, Choi MS, Wang HJ, Kim IH, Yeon JE, Seo YS, Tak WY, Kim MY, Lee HJ, Kim YS, Jun DW, Sohn JH, Kwon SY, Park SH, Heo J, Jeong SH, Lee JH, Nakayama N, Mochida S, Ido A, Tsubouchi H, Takikawa H, Shalimar, Acharya SK, Bernal W, O’grady J, Kim YJ. A model to predict 1-month risk of transplant or death in hepatitis A-related acute liver failure. Hepatology. 2019;70:621.10.1002/hep.30262
[77] [77] Chalasani N, Bonkovsky HL, Fontana R, Lee W, Stolz A, Talwalkar J, Reddy KR, Watkins PB, Navarro V, Barnhart H, Gu J, Serrano J, United States Drug Induced Liver Injury Network. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology. 2015;148:1340.10.1053/j.gastro.2015.03.006
[78] [78] Li X, Tang J, Mao Y. Incidence and risk factors of drug-induced liver injury. Liver Int. 1999;2022:42.
[88] [88] Gonzalez R, Ferrin G, Hidalgo AB, Ranchal I, Lopez-Cillero P, Santos-Gonzalez M, Lopez-Lluch G, Briceno J, Gomez MA, Poyato A, Villalba JM, Navas P, De La Mata M, Muntane J. N-Acetylcysteine, coenzyme Q10 and superoxide dismutase mimetic prevent mitochondrial cell dysfunction and cell death induced by d-galactosamine in primary culture of human hepatocytes. Chem Biol Interact. 2009;181:95.10.1016/j.cbi.2009.06.003
[91] [91] Shi D, Zhang J, Zhou Q, Xin J, Jiang J, Jiang L, Wu T, Li J, Ding W, Li J, Sun S, Li J, Zhou N, Zhang L, Jin L, Hao S, Chen P, Cao H, Li M, Li L, Chen X, Li J. Quantitative evaluation of human bone mesenchymal stem cells rescuing fulminant hepatic failure in pigs. Gut. 2017;66:955.10.1136/gutjnl-2015-311146
[95] [95] Sepehrinezhad A, Shahbazi A, Sahab Negah S, Joghataei MT, Larsen FS. Drug-induced-acute liver failure: a critical appraisal of the thioacetamide model for the study of hepatic encephalopathy. Toxicol Res. 2021;8:962.
[99] [99] Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R, Koch M, Makuuchi M, Dematteo RP, Christophi C, Banting S, Usatoff V, Nagino M, Maddern G, Hugh TJ, Vauthey JN, Greig P, Rees M, Yokoyama Y, Fan ST, Nimura Y, Figueras J, Capussotti L, Buchler MW, Weitz J. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery. 2011;149:713.10.1016/j.surg.2010.10.001
[105] [105] Makino H, Togo S, Kubota T, Morioka D, Morita T, Kobayashi T, Tanaka K, Shimizu T, Matsuo K, Nagashima Y, Shimada H. A good model of hepatic failure after excessive hepatectomy in mice. J Surg Res. 2005;127:171.10.1016/j.jss.2005.04.029
[108] [108] Zhou J, Guo L, Ma T, Qiu T, Wang S, Tian S, Zhang L, Hu F, Li W, Liu Z, Hu Y, Wang T, Kong C, Yang J, Zhou J, Li H. N-Acetylgalactosaminyltransferase-4 protects against hepatic ischemia/reperfusion injury by blocking apoptosis signal-regulating kinase 1 N-terminal dimerization. Hepatology. 2022;75:1446.10.1002/hep.32202
[109] [109] Sahay P, Jain K, Sinha P, Das B, Mishra A, Kesarwani A, Sahu P, Mohan KV, Kumar MJM, Nagarajan P, Upadhyay P. Generation of a rat model of acute liver failure by combining 70% partial hepatectomy and acetaminophen. J Vis Exp. 2019. .10.3791/60146
[110] [110] Machaidze Z, Yeh H, Wei L, Schuetz C, Carvello M, Sgroi A, Smith RN, Schuurman HJ, Sachs DH, Morel P, Markmann JF, Buhler LH. Testing of microencapsulated porcine hepatocytes in a new model of fulminant liver failure in baboons. Xenotransplantation. 2017;24: e12297.10.1111/xen.12297
[111] [111] Mitsiev I, Rubio K, Ranvir VP, Yu D, Palanisamy AP, Chavin KD, Singh I. Combining ALT/AST values with surgical APGAR score improves prediction of major complications after hepatectomy. J Surg Res (Houst). 2021;4:656.
[121] [121] Li WJ, Zhu XJ, Yuan TJ, Wang ZY, Bian ZQ, Jing HS, Shi X, Chen CY, Fu GB, Huang WJ, Shi YP, Liu Q, Zeng M, Zhang HD, Wu HP, Yu WF, Zhai B, Yan HX. An extracorporeal bioartificial liver embedded with 3D-layered human liver progenitor-like cells relieves acute liver failure in pigs. Sci Transl Med. 2020;12: eaba5146.10.1126/scitranslmed.aba5146
[128] [128] Guo L, Zhu Z, Gao C, Chen K, Lu S, Yan H, Liu W, Wang M, Ding Y, Huang L, Wang X. Development of biomimetic hepatic lobule-like constructs on silk-collagen composite scaffolds for liver tissue engineering. Front Bioeng Biotechnol. 2022;10: 940634.10.3389/fbioe.2022.940634
[131] [131] Toosi S, Naderi-Meshkin H, Kalalinia F, Peivandi MT, Hosseinkhani H, Bahrami AR, Heirani-Tabasi A, Mirahmadi M, Behravan J. PGA-incorporated collagen: toward a biodegradable composite scaffold for bone-tissue engineering. J Biomed Mater Res A. 2020;2016:104.
[143] [143] Wang QS, Yu XY, Chen XM, Gao JM, Shi DK, Shen Y, Tang JY, He JH, Li AN, Yu L, Ding JD. A facile composite strategy to prepare a biodegradable polymer based radiopaque raw material for “visualizable” biomedical implants. ACS Appl Mater Inter. 2022;14:24197.10.1021/acsami.2c05184
[151] [151] Sonseca A, Sahay R, Stepien K, Bukala J, Wcislek A, Mcclain A, Sobolewski P, Sui X, Puskas JE, Kohn J, Wagner HD, El Fray M. Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning. Mater Sci Eng C Mater Biol Appl. 2020;108: 110505.10.1016/j.msec.2019.110505
[154] [154] Das P, Divito MD, Wertheim JA, Tan LP. Bioengineered 3D electrospun nanofibrous scaffold with human liver cells to study alcoholic liver disease in vitro. Integr Biol. 2021;13:184.
[176] [176] Liang XY, Gao JM, Xu WK, Wang XL, Shen Y, Tang JY, Cui SQ, Yang XW, Liu QS, Yu L, Ding JD. Structural mechanics of 3D-printed poly(lactic acid) scaffolds with tetragonal, hexagonal and wheel-like designs. Biofabrication. 2019;11: 035009.10.1088/1758-5090/ab0f59
[187] [187] Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y. Tailoring micro/nano-fibers for biomedical applications. Bioact Mater. 2023;19:328.
[194] [194] Deineka V, Sulaieva O, Pernakov M, Korniienko V, Husak Y, Yanovska A, Yusupova A, Tkachenko Y, Kalinkevich O, Zlatska A, Pogorielov M. Hemostatic and tissue regeneration performance of novel electrospun chitosan-based materials. Biomedicines. 2021;9:588.10.3390/biomedicines9060588
[200] [200] Adamek B, Zalewska-Ziob M, Strzelczyk JK, Kasperczyk J, Wolkowska-Pokrywa K, Spausta G, Hudziec E, Wiczkowski A, Swietochowska E, Kukla M, Ostrowska Z. Hepatocyte growth factor and epidermal growth factor activity during later stages of rat liver regeneration upon interferon alpha-2b influence. Clin Exp Hepatol. 2017;3:9.10.5114/ceh.2017.65499
[203] [203] Son J, Tae JY, Min SK, Ko Y, Park JB. Fibroblast growth factor-4 maintains cellular viability while enhancing osteogenic differentiation of stem cell spheroids in part by regulating RUNX2 and BGLAP expression. Exp Ther Med. 2013;2020:20.
[214] [214] Yi B, Xu Q, Liu W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact Mater. 2022;15:82.
[218] [218] Tan GZ, Zhou Y. Tunable 3D nanofiber architecture of polycaprolactone by divergence electrospinning for potential tissue engineering applications. Nanomicro Lett. 2018;10:73.
[219] [219] Yang C, Jiang X, Gao X, Wang H, Li L, Hussain N, Xie J, Cheng Z, Li Z, Yan J, Zhong M, Zhao L, Wu H. Saving 80% polypropylene in facemasks by laser-assisted melt-blown nanofibers. Nano Lett. 2022;22:7212.10.1021/acs.nanolett.2c02693
[222] [222] Feng Y, Wang N, He T, He R, Chen M, Yang L, Zhang S, Zhu S, Zhao Q, Ma J, Chen S, Li J. Ag/Zn galvanic couple cotton nonwovens with breath-activated electroactivity: a possible antibacterial layer for personal protective face masks. ACS Appl Mater Inter. 2021;13:59196.10.1021/acsami.1c15113
[223] [223] Li Z, Cui Z, Zhao L, Hussain N, Zhao Y, Yang C, Jiang X, Li L, Song J, Zhang B, Cheng Z, Wu H. High-throughput production of kilogram-scale nanofibers by Karman vortex solution blow spinning. Sci Adv. 2022;8: eabn3690.10.1126/sciadv.abn3690
[227] [227] Jin Y, Zhang J, Xu Y, Yi K, Li F, Zhou H, Wang H, Chan HF, Lao YH, Lv S, Tao Y, Li M. Stem cell-derived hepatocyte therapy using versatile biomimetic nanozyme incorporated nanofiber-reinforced decellularized extracellular matrix hydrogels for the treatment of acute liver failure. Bioact Mater. 2023;28:112.