Journal of Innovative Optical Health Sciences, Volume. 16, Issue 6, 2350012(2023)
Articial neural network-based determination of denoised optical properties in double integrating spheres measurement
[1] J. Gunther, H. Lu, S. Andersson-Engels. Combination of diffuse reflectance and transmittance spectroscopy to obtain optical properties of liquid phantoms. Opt. Eng., 59, 024109(2020).
[2] S. L. Jacques. Optical properties of biological tissues: A review. Phys. Med. Biol., 58, R37-R61(2013).
[3] A. N. Bashkatov, E. A. Genina, V. V. Tuchin. Optical properties of skin, subcutaneous, and muscle tissues: A review. J. Innovative Opt. Health Sci., 4, 9-38(2011).
[4] J. L. Sandell, T. C. Zhu. A review of in-vivo optical properties of human tissues and its impact on PDT. J. Biophotonics, 4, 773-787(2011).
[5] J. W. Pickering, S. A. Prahl, N. Van Wieringen, J. F. Beek, H. J. Sterenborg, M. J. Van Gemert. Double-integrating-sphere system for measuring the optical properties of tissue. Appl. Opt., 32, 399-410(1993).
[6] T. L. Troy, S. N. Thennadil. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200nm. J. Biomed. Opt., 6, 167-176(2001).
[7] A. ul Rehman, I. Ahmad, S. A. Qureshi. Biomedical applications of integrating sphere: A review. Photodiagnosis Photodyn. Ther., 31, 101712(2020).
[8] S. A. Prahl, M. J. van Gemert, A. J. Welch. Determining the optical properties of turbid media by using the adding–doubling method. Appl. Opt., 32, 559-568(1993).
[9] M. Hammer, A. Roggan, D. Schweitzer, G. Muller. Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation. Phys. Med. Biol., 40, 963-978(1995).
[10] N. Rajaram, T. Nguyen, J. W. Tunnell. Lookup table–based inverse model for determining optical properties of turbid media. J. Biomed. Opt., 13, 050501(2008).
[11] C. Li, H. Zhao, Q. Wang, K. Xu. Artificial neural network method for determining optical properties from double-integrating-spheres measurements. Chin. Opt. Lett., 8, 173-176(2010).
[12] T. Nishimura, Y. Takai, Y. Shimojo, H. Hazama, K. Awazu. Determination of optical properties in double integrating sphere measurement by artificial neural network based method. Opt. Rev., 28, 42-47(2021).
[13] S. Gebhart, W. Lin, A. Mahadevan-Jansen. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Phys. Med. Biol., 51, 2011-2027(2006).
[14] G. M. Palmer, N. Ramanujam. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Appl. Opt., 45, 1062-1071(2006).
[15] D. Yudovsky, L. Pilon. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance. Appl. Opt., 49, 1707-1719(2010).
[16] A. N. Bashkatov et al. Measurement of tissue optical properties in the context of tissue optical clearing. J. Biomed. Opt., 23, 091416(2018).
[17] G. Alexandrakis, F. R. Rannou, A. F. Chatziioannou. Tomographic bioluminescence imaging by use of a combined optical-pet (OPET) system: A computer simulation feasibility study. Phys. Med. Biol., 50, 4225-4241(2005).
[18] T.-Y. Tseng, C.-Y. Chen, Y.-S. Li, K.-B. Sung. Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy. Biomed. Opt. Exp., 2, 901-914(2011).
[19] L. Wang, S. L. Jacques, L. Zheng. MCML-Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Progr. Biomed., 47, 131-146(1995).
[20] E. Alerstam, W. C. Y. Lo, T. D. Han, J. Rose, S. Andersson-Engels, L. Lilge. Next-generation acceleration and code optimization for light transport in turbid media using GPUs. Biomed. Opt. Exp., 1, 658-675(2010).
[21] V. V. Tuchin. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics(2007).
[22] J. Beek, P. Blokland, P. Posthumus, M. Aalders, J. Pickering, H. Sterenborg, M. Van Gemert. In vitro double-integrating-sphere optical properties of tissues between 630 and 1064nm. Phys. Med. Biol., 42, 2255-2261(1997).
[23] M. Izzetoglu, P. Chitrapu, S. Bunce, B. Onaral. Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering. Biomed. Eng. Online, 9, 1-10(2010).
[24] Y. Shimojo, T. Nishimura, H. Hazama, T. Ozawa, K. Awazu. Measurement of absorption and reduced scattering coefficients in Asian human epidermis, dermis, and subcutaneous fat tissues in the 400-to 1100-nm wavelength range for optical penetration depth and energy deposition analysis. J. Biomed. Opt., 25, 045002(2020).
[25] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm. J. Phys. D Appl. Phys., 38, 2543-2555(2005).
[26] P. Lemaillet, J.-P. Bouchard, J. Hwang, D. W. Allen. Double-integrating-sphere system at the National Institute of Standards and Technology in support of measurement standards for the determination of optical properties of tissue-mimicking phantoms. J. Biomed. Opt., 20, 121310(2015).
[27] D. Zhu, Q. Luo, J. Cen. Effects of dehydration on the optical properties of in vitro porcine liver. Lasers Surg. Med., 33, 226-231(2003).
[28] I. Fredriksson, M. Larsson, T. Strömberg. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy. J. Biomed. Opt., 17, 047004(2012).
[29] Y.-W. Chen, S.-H. Tseng. Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties. Biomed. Opt. Exp., 6, 747-760(2015).
[30] G. Greening, A. Mundo, N. Rajaram, T. J. Muldoon. Sampling depth of a diffuse reflectance spectroscopy probe for in-vivo physiological quantification of murine subcutaneous tumor allografts. J. Biomed. Opt., 23, 085006(2018).
Get Citation
Copy Citation Text
Yusaku Takai, Takahiro Nishimura, Yu Shimojo, Kunio Awazu. Articial neural network-based determination of denoised optical properties in double integrating spheres measurement[J]. Journal of Innovative Optical Health Sciences, 2023, 16(6): 2350012
Category: Research Articles
Received: Jan. 17, 2023
Accepted: Apr. 27, 2023
Published Online: Dec. 23, 2023
The Author Email: Takai Yusaku (takai-y@mb.see.eng.osaka-u.ac.jp), Nishimura Takahiro (nishimura-t@see.eng.osaka-u.ac.jp)