Optics and Precision Engineering, Volume. 30, Issue 18, 2241(2022)
Unsupervised representation learning for cultural relics based on local-global bidirectional reasoning
[1] RASHEED N A, NORDIN M J. Classification and reconstruction algorithms for the archaeological fragments[J]. Journal of King Saud University-Computer and Information Sciences, 32, 883-894(2020).
[2] [2] 2陆正杰, 李纯辉, 耿国华, 等. 基于多特征描述子自适应权重的文物碎片分类[J]. 激光与光电子学进展, 2020, 57(4): 321-329. doi: 10.3788/LOP57.041511LUZ J, LIC H, GENGG H, et al. Classification of cultural fragments based on adaptive weights of multi-feature descriptions[J]. Laser & Optoelectronics Progress, 2020, 57(4): 321-329.(in Chinese). doi: 10.3788/LOP57.041511
[3] CHEN X Z, MA H M, WAN J et al. Multi-view 3D object detection network for autonomous driving[C], 6526-6534(2017).
[4] [4] 4陈苑锋. 视觉深度估计与点云建图研究进展[J]. 液晶与显示, 2021, 36(6): 896-911. doi: 10.37188/CJLCD.2020-0047CHENY F. Progress of visual depth estimation and point cloud mapping[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(6): 896-911.(in Chinese). doi: 10.37188/CJLCD.2020-0047
[5] WANG Q, LIU S T, CHANUSSOT J et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 1155-1167(2019).
[6] GENG G H, LIU J, CAO X et al. Simplification method for 3D Terracotta Warrior fragments based on local structure and deep neural networks[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 37, 1711-1720(2020).
[7] YANG K, CAO X, GENG G H et al. Classification of 3D terracotta warriors fragments based on geospatial and texture information[J]. Journal of Visualization, 24, 251-259(2021).
[8] [8] 8鱼跃华, 张海波, 李昕,等. 基于数据增强的秦俑碎片深度分类模型[J/OL]. 激光与光电子学进展, 2021, doi:10.3788/ lop59.1810010.YUY H, ZHANGH B, LIX, et al. Data Enhanced Depth Classification Model for Terra-Cotta Warriors Fragments [J/OL]. Laser & Optoelectronics Progress, 2021, doi:10.3788/ lop59.1810010.(in Chinese)
[9] GAO H J, GENG G H, ZENG S. Approach for 3D cultural relic classification based on a low-dimensional descriptor and unsupervised learning[J]. Entropy (Basel, Switzerland), 22, 1290(2020).
[10] YAO W M, CHU T, TANG W L et al. SPPD: a novel reassembly method for 3D terracotta warrior fragments based on fracture surface information[J]. ISPRS International Journal of Geo-Information, 10, 525(2021).
[11] CHARLES R Q, HAO S, MO K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 77-85(2017).
[12] QI C R, YI L, SU H et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 30(2017).
[13] ZHANG Z Y, HUA B S, YEUNG S K. ShellNet: efficient point cloud convolutional neural networks using concentric shells statistics[C], 1607-1616(2019).
[14] LI J X, CHEN B M, LEE G H. SO-net: self-organizing network for point cloud analysis[C], 9397-9406(2018).
[15] [15] 15杨军, 党吉圣. 采用深度级联卷积神经网络的三维点云识别与分割[J]. 光学 精密工程, 2020, 28(5): 1187-1199. doi: 10.3788/OPE.20202805.1187YANGJ, DANGJ S. Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network[J]. Opt. Precision Eng., 2020, 28(5): 1187-1199.(in Chinese). doi: 10.3788/OPE.20202805.1187
[16] [16] 16伍锡如, 薛其威. 基于激光雷达的无人驾驶系统三维车辆检测[J]. 光学 精密工程, 2022, 30(4): 489-497. doi: 10.37188/OPE.20223004.0489WUX R, XUEQ W. 3D vehicle detection for unmanned driving systerm based on lidar[J]. Opt. Precision Eng., 2022, 30(4): 489-497.(in Chinese). doi: 10.37188/OPE.20223004.0489
[17] LIU J, CAO X, ZHANG P C et al. AMS-net: an attention-based multi-scale network for classification of 3D terracotta warrior fragments[J]. Remote Sensing, 13, 3713(2021).
[18] [18] 18徐哲, 耿杰, 蒋雯, 等. 联合训练生成对抗网络的半监督分类方法[J]. 光学 精密工程, 2021, 29(5): 1127-1135. doi: 10.37188/OPE.20212905.1127XUZ, GENGJ, JIANGW, et al. Co-training generative adversarial networks for semi-supervised classification method[J]. Opt. Precision Eng., 2021, 29(5): 1127-1135.(in Chinese). doi: 10.37188/OPE.20212905.1127
[19] ACHLIOPTAS P, DIAMANTI O, MITLIAGKAS I et al. Learning representations and generative models for 3d point clouds[C], 421-428(27).
[20] YANG Y Q, FENG C, SHEN Y R et al. FoldingNet: point cloud auto-encoder via deep grid deformation[C], 206-215(2018).
[22] LIU X H, HAN Z Z, WEN X et al. L2G auto-encoder: understanding point clouds by local-to-global reconstruction with hierarchical self-attention[C], 989-997(2019).
[23] HASSANI K, HALEY M. Unsupervised multi-task feature learning on point clouds[C], 8159-8170(2019).
[24] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C], 815-823(2015).
[25] KIHYUK Sohn. Improved deep metric learning with multi-class n-pair loss objective[C], 1857-1865(5).
[26] DU G G, ZHOU M Q, YIN C L et al. Classifying fragments of terracotta warriors using template-based partial matching[J]. Multimedia Tools and Applications, 77, 19171-19191(2018).
Get Citation
Copy Citation Text
Jie LIU, Guohua GENG, Yu TIAN, Yi WANG, Yangyang LIU, Mingquan ZHOU. Unsupervised representation learning for cultural relics based on local-global bidirectional reasoning[J]. Optics and Precision Engineering, 2022, 30(18): 2241
Category: Information Sciences
Received: Mar. 27, 2022
Accepted: --
Published Online: Oct. 27, 2022
The Author Email: Guohua GENG (ghgeng@nwu.edu.cn)