Optics and Precision Engineering, Volume. 30, Issue 18, 2241(2022)

Unsupervised representation learning for cultural relics based on local-global bidirectional reasoning

Jie LIU1...2, Guohua GENG1,2,*, Yu TIAN1,2, Yi WANG1,2, Yangyang LIU1,2, and Mingquan ZHOU12 |Show fewer author(s)
Author Affiliations
  • 1National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Northwest University, Xi'an7027, China
  • 2College of Information Science and Technology, Northwest University, Xi'an71017, China
  • show less
    References(26)

    [1] N A RASHEED, M J NORDIN. Classification and reconstruction algorithms for the archaeological fragments. Journal of King Saud University-Computer and Information Sciences, 32, 883-894(2020).

    [2] [2] 2陆正杰, 李纯辉, 耿国华, 等. 基于多特征描述子自适应权重的文物碎片分类[J]. 激光与光电子学进展, 2020, 57(4): 321-329. doi: 10.3788/LOP57.041511LUZ J, LIC H, GENGG H, et al. Classification of cultural fragments based on adaptive weights of multi-feature descriptions[J]. Laser & Optoelectronics Progress, 2020, 57(4): 321-329.(in Chinese). doi: 10.3788/LOP57.041511

    [3] X Z CHEN, H M MA, J WAN et al. Multi-view 3D object detection network for autonomous driving, 6526-6534(2017).

    [4] [4] 4陈苑锋. 视觉深度估计与点云建图研究进展[J]. 液晶与显示, 2021, 36(6): 896-911. doi: 10.37188/CJLCD.2020-0047CHENY F. Progress of visual depth estimation and point cloud mapping[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(6): 896-911.(in Chinese). doi: 10.37188/CJLCD.2020-0047

    [5] Q WANG, S T LIU, J CHANUSSOT et al. Scene classification with recurrent attention of VHR remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 57, 1155-1167(2019).

    [6] G H GENG, J LIU, X CAO et al. Simplification method for 3D Terracotta Warrior fragments based on local structure and deep neural networks. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 37, 1711-1720(2020).

    [7] K YANG, X CAO, G H GENG et al. Classification of 3D terracotta warriors fragments based on geospatial and texture information. Journal of Visualization, 24, 251-259(2021).

    [8] [8] 8鱼跃华, 张海波, 李昕,等. 基于数据增强的秦俑碎片深度分类模型[J/OL]. 激光与光电子学进展, 2021, doi:10.3788/ lop59.1810010.YUY H, ZHANGH B, LIX, et al. Data Enhanced Depth Classification Model for Terra-Cotta Warriors Fragments [J/OL]. Laser & Optoelectronics Progress, 2021, doi:10.3788/ lop59.1810010.(in Chinese)

    [9] H J GAO, G H GENG, S ZENG. Approach for 3D cultural relic classification based on a low-dimensional descriptor and unsupervised learning. Entropy (Basel, Switzerland), 22, 1290(2020).

    [10] W M YAO, T CHU, W L TANG et al. SPPD: a novel reassembly method for 3D terracotta warrior fragments based on fracture surface information. ISPRS International Journal of Geo-Information, 10, 525(2021).

    [11] R Q CHARLES, S HAO, K C MO et al. PointNet: deep learning on point sets for 3D classification and segmentation, 77-85(2017).

    [12] C R QI, L YI, H SU et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in Neural Information Processing Systems, 30(2017).

    [13] Z Y ZHANG, B S HUA, S K YEUNG. ShellNet: efficient point cloud convolutional neural networks using concentric shells statistics, 1607-1616(2019).

    [14] J X LI, B M CHEN, G H LEE. SO-net: self-organizing network for point cloud analysis, 9397-9406(2018).

    [15] [15] 15杨军, 党吉圣. 采用深度级联卷积神经网络的三维点云识别与分割[J]. 光学 精密工程, 2020, 28(5): 1187-1199. doi: 10.3788/OPE.20202805.1187YANGJ, DANGJ S. Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network[J]. Opt. Precision Eng., 2020, 28(5): 1187-1199.(in Chinese). doi: 10.3788/OPE.20202805.1187

    [16] [16] 16伍锡如, 薛其威. 基于激光雷达的无人驾驶系统三维车辆检测[J]. 光学 精密工程, 2022, 30(4): 489-497. doi: 10.37188/OPE.20223004.0489WUX R, XUEQ W. 3D vehicle detection for unmanned driving systerm based on lidar[J]. Opt. Precision Eng., 2022, 30(4): 489-497.(in Chinese). doi: 10.37188/OPE.20223004.0489

    [17] J LIU, X CAO, P C ZHANG et al. AMS-net: an attention-based multi-scale network for classification of 3D terracotta warrior fragments. Remote Sensing, 13, 3713(2021).

    [18] [18] 18徐哲, 耿杰, 蒋雯, 等. 联合训练生成对抗网络的半监督分类方法[J]. 光学 精密工程, 2021, 29(5): 1127-1135. doi: 10.37188/OPE.20212905.1127XUZ, GENGJ, JIANGW, et al. Co-training generative adversarial networks for semi-supervised classification method[J]. Opt. Precision Eng., 2021, 29(5): 1127-1135.(in Chinese). doi: 10.37188/OPE.20212905.1127

    [19] P ACHLIOPTAS, O DIAMANTI, I MITLIAGKAS et al. Learning representations and generative models for 3d point clouds, 421-428(27).

    [20] Y Q YANG, C FENG, Y R SHEN et al. FoldingNet: point cloud auto-encoder via deep grid deformation, 206-215(2018).

    [22] X H LIU, Z Z HAN, X WEN et al. L2G auto-encoder: understanding point clouds by local-to-global reconstruction with hierarchical self-attention, 989-997(2019).

    [23] K HASSANI, M HALEY. Unsupervised multi-task feature learning on point clouds, 8159-8170(2019).

    [24] F SCHROFF, D KALENICHENKO, J PHILBIN. FaceNet: a unified embedding for face recognition and clustering, 815-823(2015).

    [25] Sohn KIHYUK. Improved deep metric learning with multi-class n-pair loss objective, 1857-1865(5).

    [26] G G DU, M Q ZHOU, C L YIN et al. Classifying fragments of terracotta warriors using template-based partial matching. Multimedia Tools and Applications, 77, 19171-19191(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jie LIU, Guohua GENG, Yu TIAN, Yi WANG, Yangyang LIU, Mingquan ZHOU. Unsupervised representation learning for cultural relics based on local-global bidirectional reasoning[J]. Optics and Precision Engineering, 2022, 30(18): 2241

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Mar. 27, 2022

    Accepted: --

    Published Online: Oct. 27, 2022

    The Author Email: GENG Guohua (ghgeng@nwu.edu.cn)

    DOI:10.37188/OPE.20223018.2241

    Topics