Laser & Optoelectronics Progress, Volume. 57, Issue 21, 210002(2020)

Distributed Fiber Sensor Based on Brillouin Optical Time Domain Reflection Technique

Bao Yuben, Sun Junqiang*, and Huang Qiang
Author Affiliations
  • 华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
  • show less
    References(114)

    [4] Minardo A, Bernini R, Ruiz-Lombera R et al. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR)[J]. Optics Express, 24, 29994-30001(2016).

    [5] Hotate K, Hasegawa T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique: proposal, experiment and simulation[J]. IEICE Transactions on Electronics, 84, 405-412(2000).

    [7] Horiguchi T, Shimizu K, Kurashima T et al. Development of a distributed sensing technique using Brillouin scattering[J]. Journal of Lightwave Technology, 13, 1296-1302(1995).

    [8] Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 21, 539-541(1972).

    [9] Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering[J]. Applied Optics, 11, 2489-2494(1972).

    [10] Culverhouse D, Farahi F, Pannell C N et al. Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors[J]. Electronics Letters, 25, 913-915(1989).

    [12] Kee H H, Lees G P, Newson T P. All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering[J]. Optics Letters, 25, 695-697(2000).

    [13] Lees G P, Wait P C, Cole M J et al. Advances in optical fiber distributed temperature sensing using the Landau-Placzek ratio[J]. IEEE Photonics Technology Letters, 10, 126-128(1998).

    [14] Wait P C, Newson T P. Landau Placzek ratio applied to distributed fibre sensing[J]. Optics Communications, 122, 141-146(1996).

    [15] Parker T R, Farhadiroushan M, Handerek V A et al. A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter[J]. IEEE Photonics Technology Letters, 9, 979-981(1997).

    [16] Li Y Q, Li X J, An Q et al. Detrimental effect elimination of laser frequency instability in Brillouin optical time domain reflectometer by using self-heterodyne detection[J]. Sensors, 17, 634(2017).

    [17] Shimizu K, Horiguchi T, Koyamada Y et al. Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers[J]. Journal of Lightwave Technology, 12, 730-736(1994).

    [18] Izumita H, Sato T, Tateda M et al. Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator[J]. IEEE Photonics Technology Letters, 8, 1674-1676(1996).

    [19] Lecœuche V. 16 km distributed temperature sensor based on coherent detection of spontaneous Brillouin scattering using a Brillouin laser[J]. Proceedings of SPIE, 3746, 374643(1999).

    [20] Maughan S M, Kee H H, Newson T P. Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter[J]. Measurement Science and Technology, 12, 834-842(2001).

    [21] Chang T Y, Li D Y, Koscica T E et al. Fiber optic distributed temperature and strain sensing system based on Brillouin light scattering[J]. Applied Optics, 47, 6202-6206(2008).

    [22] Bao X, Brown A, Demerchant M et al. Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses[J]. Optics Letters, 24, 510-512(1999).

    [23] Koyamada Y, Sakairi Y, Takeuchi N et al. Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry[J]. IEEE Photonics Technology Letters, 19, 1910-1912(2007).

    [24] Nishiguchi K, Li C H, Guzik A et al. Synthetic spectrum approach for Brillouin optical time-domain reflectometry[J]. Sensors, 14, 4731-4754(2014).

    [25] Shibata R, Kasahara H, Elias L P et al. Improving performance of phase shift pulse BOTDR[J]. IEICE Electronics Express, 14, 20170267(2017).

    [26] Zan M S D, Masui Y, Horiguchi T. Differential cross spectrum technique for improving the spatial resolution of BOTDR sensor[C]∥2018 IEEE 7th International Conference on Photonics (ICP), April 9-11, 2018, Kuah, Malaysia., 1-3(2018).

    [27] Li Q Y, Gan J L, Wu Y Q et al. High spatial resolution BOTDR based on differential Brillouin spectrum technique[J]. IEEE Photonics Technology Letters, 28, 1493-1496(2016).

    [28] Yu Z H, Zhang M Y, Dai H L et al. Distributed optical fiber sensing with Brillouin optical time domain reflectometry based on differential pulse pair[J]. Optics & Laser Technology, 105, 89-93(2018).

    [29] Wang F, Zhan W W, Zhang X P et al. Improvement of spatial resolution for BOTDR by iterative subdivision method[J]. Journal of Lightwave Technology, 31, 3663-3667(2013).

    [30] Yu Y, Luo L, Li B et al. Quadratic time-frequency transforms-based Brillouin optical time-domain reflectometry[J]. IEEE Sensors Journal, 17, 6622-6626(2017).

    [31] Zhang Y J, Li D, Fu X H et al. A pluse subdivision superposition method for improving the spatial resolution in BOTDR system[J]. Optik, 140, 523-527(2017).

    [33] Hao Y Q, Ye Q, Pan Z Q et al. Influence of laser linewidth on performance of Brillouin optical time domain reflectometry[J]. Chinese Physics B, 22, 074214(2013).

    [34] Bai Q, Yan M, Xue B et al. The influence of laser linewidth on the Brillouin shift frequency accuracy of BOTDR[J]. Applied Sciences, 9, 58(2018).

    [35] de Souza K. Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering[J]. Measurement Science and Technology, 17, 1065-1069(2006).

    [37] Lalam N, Ng W P, Dai X et al. Performance improvement of BOTDR system using wavelength diversity technique[J]. Proceedings of SPIE, 1032, 1032366(2017).

    [39] Lu Y G, Yao Y G, Zhao X D et al. Influence of non-perfect extinction ratio of electro-optic modulator on signal-to-noise ratio of BOTDR[J]. Optics Communications, 297, 48-54(2013).

    [42] Geng J H, Staines S, Wang Z L et al. Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth[J]. IEEE Photonics Technology Letters, 18, 1813-1815(2006).

    [43] Geng J H, Staines S, Blake M et al. Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering[J]. Applied Optics, 46, 5928-5932(2007).

    [44] Hao Y Q, Ye Q, Pan Z Q et al. Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system[J]. IEEE Photonics Journal, 4, 1686-1692(2012).

    [47] Xia L, Hu J H, Zhao Q Y et al. A distributed Brillouin temperature sensor using a single-photon detector[J]. IEEE Sensors Journal, 16, 2180-2185(2016).

    [48] Xia H Y, Shangguan M J, Shentu G L et al. Brillouin optical time-domain reflectometry using up-conversion single-photon detector[J]. Optics Communications, 381, 37-42(2016).

    [49] Cho Y T, Alahbabi M, Gunning M J et al. 50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification[J]. Optics Letters, 28, 1651-1653(2003).

    [50] Alahbabi M N, Cho Y T, Newson T P. 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification[J]. Journal of the Optical Society of America B, 22, 1321-1324(2005).

    [51] Alahbabi M N, Cho Y T, Newson T P. Long-range distributed temperature and strain optical fibre sensor based on the coherent detection of spontaneous Brillouin scattering with in-line Raman amplification[J]. Measurement Science and Technology, 17, 1082-1090(2006).

    [52] Song M P, Xia Q L, Feng K B et al. 100 km Brillouin optical time-domain reflectometer based on unidirectionally pumped Raman amplification[J]. Optical and Quantum Electronics, 48, 1-10(2015).

    [53] Soto M A, Bolognini G, Di Pasquale F. Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors[J]. Optics Express, 16, 19097-19111(2008).

    [54] Soto M A, Bolognini G, Di Pasquale F. Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding[J]. IEEE Photonics Technology Letters, 21, 450-452(2009).

    [55] Fan Z, Zhang X P, Hu J H et al. Design of fast pulse coding/decoding system for BOTDR[C]∥2012 Photonics Global Conference (PGC), December 13-16, 2012, Singapore, Singapore., 1-6(2012).

    [57] Wang F, Zhu C H, Cao C Q et al. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding[J]. Optics Express, 25, 3504-3513(2017).

    [60] Zhang Y J, Li D, Fu X H et al. An improved Levenberg-Marquardt algorithm for extracting the features of Brillouin scattering spectrum[J]. Measurement Science and Technology, 24, 015204(2013).

    [61] Zhang Y J, Zhao Y, Fu X H et al. A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra[J]. Optics Communications, 376, 56-66(2016).

    [62] Pradhan H S, Sahu P K. Brillouin distributed strain sensor performance improvement using FourWaRD algorithm[J]. Optik, 127, 2666-2669(2016).

    [63] Zheng H R, Fang Z J, Wang Z Y et al. Brillouin frequency shift of fiber distributed sensors extracted from noisy signals by quadratic fitting[J]. Sensors, 18, 409(2018).

    [65] Yu Y F, Luo L Q, Li B et al. Frequency resolution quantification of Brillouin-distributed optical fiber sensors[J]. IEEE Photonics Technology Letters, 28, 2367-2370(2016).

    [67] Czarske J W, Zawischa I, Tünnermann A. Distributed Brillouin temperature OTDR fiber sensor using powerful all-solid-state lasers. [C]∥12th International Conference on Optical Fiber Sensors, Williamsburg, Virginia. Washington, D.C.: OSA, OThC33(1997).

    [68] Lu Y G, Dou R R, Zhang X P. Wideband dectection of spontaneous Brillouin scattering spectrum in Brillouin optical time-domain reflectometry. [C]∥2008 International Conference on Optical Instruments and Technology: Microelectronic and Optoelectronic Devices and Integration, February 9, 2009, Beijing, China. Washington: Society of Photo-Opti, 7158, 360-366(2009).

    [72] Ding Y, Shi B, Zhang D. Data processing in BOTDR distributed strain measurement based on pattern recognition[J]. Optik, 121, 2234-2239(2010).

    [73] Koizumi K, Kanda Y, Fujii A et al. High-speed distributed strain measurement using Brillouin optical time-domain reflectometry based-on self-delayed heterodyne detection[C]∥2015 European Conference on Optical Communication (ECOC), Sept, 1-3(2015).

    [74] Maraval D, Gabet R, Jaouen Y et al. Dynamic optical fiber sensing with Brillouin optical time domain reflectometry: application to pipeline vibration monitoring[J]. Journal of Lightwave Technology, 35, 3296-3302(2017).

    [76] Shangguan M J, Wang C, Xia H Y et al. Brillouin optical time domain reflectometry for fast detection of dynamic strain incorporating double-edge technique[J]. Optics Communications, 398, 95-100(2017).

    [77] Abbasnejad M, Alizadeh B. FPGA-based implementation of a novel method for estimating the Brillouin frequency shift in BOTDA and BOTDR sensors[J]. IEEE Sensors Journal, 18, 2015-2022(2018).

    [78] Kee H H, Lees G P, Newson T P. Simultaneous independent distributed strain and temperature measurements over 15 km using spontaneous Brillouin scattering[J]. Proceedings of SPIE, 4074, 271-279(2000).

    [79] Bao X, Smith J, Brown A W. Temperature and strain measurements using the power, line-width, shape, and frequency shift of the Brillouin loss spectrum[J]. Proceedings of SPIE, 4920, 311-322(2002).

    [81] Bolognini G, Soto M A, Di Pasquale F. Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength fabry-pérot lasers[J]. IEEE Photonics Technology Letters, 21, 1523-1525(2009).

    [82] Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering[J]. Optics Letters, 30, 1276-1278(2005).

    [83] Xia H Y, Zhang C X, Mu H Q et al. Edge technique for direct detection of strain and temperature based on optical time domain reflectometry[J]. Applied Optics, 48, 189-197(2009).

    [86] Weng Y, Ip E, Pan Z Q et al. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers[J]. Optics Express, 23, 9024-9039(2015).

    [87] Zhou X, Guo Z, Ke C J et al. Simultaneous temperature and strain sensing utilizing Brillouin frequency shifts contributed by multiple acoustic modes[C]∥2016 IEEE Photonics Conference (IPC), October 2-6, 2016, Waikoloa, HI, USA., 817-818(2016).

    [89] Weng Y, Ip E, Pan Z Q et al. Distributed temperature and strain sensing using spontaneous Brillouin scattering in optical few-mode fibers. [C]∥CLEO: 2015, San Jose, California. Washington, D.C.: OSA, SM2O, 5(2015).

    [90] Zou L F, Bao X Y, Afshar V S et al. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber[J]. Optics Letters, 29, 1485-1487(2004).

    [93] Shi B, Xu H Z, Chen B et al. A feasibility study on the application of fiber-optic distributed sensors for strain measurement in the Taiwan strait tunnel project[J]. Marine Georesources & Geotechnology, 21, 333-343(2003).

    [96] Moffat R, Sotomayor J, Beltrán J F. Estimating tunnel wall displacements using a simple sensor based on a Brillouin optical time domain reflectometer apparatus[J]. International Journal of Rock Mechanics and Mining Sciences, 75, 233-243(2015).

    [98] Strong A P, Sanderson N, Lees G et al. A comprehensive distributed pipeline condition monitoring system and its field trial. [C]∥2008 7th International Pipeline Conference, September 29-October 3, 2008, Calgary, Alberta, Canada. New York: American Society of Mechanical Engineers Digital Collection, 1, 711-719(2008).

    [99] Bai Q, Yan W, Wang D et al. Multi-parameter CBM pipeline safety monitoring system based on optical fiber sensing[J]. Proceedings of SPIE, 1084, 108491K(2018).

    [100] Lu Y Q, Shi B, Wei G Q et al. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles[J]. Smart Materials and Structures, 21, 115011(2012).

    [101] Feng S J, Lu S F, Shi Z M. Field investigations of two super-long steel pipe piles in offshore areas[J]. Marine Georesources & Geotechnology, 34, 559-570(2016).

    [102] Zhang W, Gao J Q, Shi B et al. Health monitoring of rehabilitated concrete bridges using distributed optical fiber sensing[J]. Computer-Aided Civil and Infrastructure Engineering, 21, 411-424(2006).

    [103] Matta F, Bastianini F, Galati N et al. Distributed strain measurement in steel bridge with fiber optic sensors: validation through diagnostic load test[J]. Journal of Performance of Constructed Facilities, 22, 264-273(2008).

    [104] He J P, Zhou Z. Optic fiber sensor-based smart bridge cable with functionality of self-sensing[J]. Mechanical Systems and Signal Processing, 35, 84-94(2013).

    [105] Liu W Q, Wang H P, Zhou Z et al. Optical fiber based sensing system design for the health monitoring of multi-layered pavement structure. [C]∥2011 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, November 22, 2011, Beijing, China. Washington: Society of Photo-Optical Instrumentation Engin, 8199, 130-137(2011).

    [108] Wu J H, Jiang H T, Su J W et al. Application of distributed fiber optic sensing technique in land subsidence monitoring[J]. Journal of Civil Structural Health Monitoring, 5, 587-597(2015).

    [113] Sun Y J, Shi B, Zhang D et al. Internal deformation monitoring of slope based on BOTDR[J]. Journal of Sensors, 2016, 1-8(2016).

    Tools

    Get Citation

    Copy Citation Text

    Bao Yuben, Sun Junqiang, Huang Qiang. Distributed Fiber Sensor Based on Brillouin Optical Time Domain Reflection Technique[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 15, 2020

    Accepted: --

    Published Online: Oct. 27, 2020

    The Author Email: Junqiang Sun (jqsun@hust.edu.cn)

    DOI:10.3788/LOP57.210002

    Topics