Infrared and Laser Engineering, Volume. 53, Issue 2, 20230730(2024)

Advances in 2 μm single-longitudinal-mode all-solid-state pulsed lasers (cover paper·invited)

Bingzheng Yan1,2, Xikui Mu1,2, Jiashuo An1,2, Yaoyao Qi1,2, Jie Ding1,2, Zhenxu Bai1,2、*, Yulei Wang1,2, and Zhiwei Lv1,2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    References(102)

    [7] Dai T Y, Wu J, Ju L, et al. A tunable and single-longitudinal-mode Ho: YLF laser[J]. Infrared Physics & Technology, 77, 149-152(2016).

    [9] Niu Changdong, Dai Ruifeng, Liu Ruike, et al. Single-longitudinal-mode selection technology and application of solid-state laser[J]. Electro-Optic Technology Application, 35, 38-47(2020).

    [10] Wang Qing, Gao Chunqing. Research progress on eye-safe all-solid-state single-frequency lasers[J]. Chinese Journal of Lasers, 48(2021).

    [15] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 44, 2095-2099(2012).

    [17] Yan Bingzheng, Bai Zhenxu, Qi Yaoyao, et al. Advances in all-solid-state laser for novel low-dimensional material saturated absorbers (Invited)[J]. Electro-Optic Technology Application, 37, 27-39(2022).

    [18] Zheng Hao, Zhao Chen, Zhang Fei, et al. Study on the longitudinal mode characteristic of idler wave in MgO: PPLN infrared optical parametric oscillator[J]. Infrared and Laser Engineering, 52, 20230378(2023).

    [22] Chen Yilan, Zhu Xiaolei, Zhang Junxuan, et al. Development of pulsed single-frequency 2 μm all-solid-state laser[J]. Laser & Optoelectronics Progress, 57, 050006(2020).

    [23] Zhang X P, Wang Z H, Liu S, et al. Development of single-longitudinal-mode selection technology for solid-state lasers[J]. International Journal of Optics, 2021, 6667015(2021).

    [25] Scholle K, Lamrini S, Koopmann P, et al. 2 µm laser sources and their possible applications[J]. Frontiers in Guided Wave Optics & Optoelectronics, 21, 471-500.(2010).

    [27] Zhu Hao, Wang Bohao, Tao Jiayou, et al. Single longitudinal mode laser output through twisted mode cavity method[J]. Journal of Hunan Institute of Science and Technology (Natural Sciences), 34, 13-17(2021).

    [36] [36] Bai Y X, Yu J R, Wong T H, et al. Singlemode, high repetition rate, compact Ho: YLF laser f spacebne lidar applications[C]CLEO: Applications Technology. IEEE, 2014: AW1P. 4.

    [37] Dai T Y, Fan Z G, Wu J, et al. High power single-longitudinal-mode Ho: YLF unidirectional ring laser based on a composite structure of acousto-optic device and wave plate[J]. Infrared Physics & Technology, 82, 40-43(2017).

    [40] Wu J, Wu Y, Dai T Y, et al. Diode pumped high efficiency single-longitudinal-mode Tm, Ho: YAP ring laser[J]. Optical Engineering, 58, 016116(2019).

    [43] Ju Y L, Liu W, Yao B Q, et al. Diode-pumped tunable single-longitudinal-mode Tm, Ho: YAG twisted-mode laser[J]. Chinese Optics Letters, 13, 111403(2015).

    [45] [45] Dai Tongyu, Yao Baoquan, Liu Wei, et al. Singledoped Ho: YAG tunable singlelongitudinalmode laser based on twistedmode technology: CN201410457753.5[P]. 20140910. (in Chinese)

    [46] Li L, Ju Y L, Dai T Y, et al. L-shaped single-longitudinal-mode Tm, Ho: YAG lasers based on twisted mode cavity[J]. Laser & Optoelectronics Progress, 54, 081408(2017).

    [47] Jin C J, Bai Y, Li L F, et al. A single-frequency, graphene-based passively Q-switched Tm: YAP laser[J]. Laser Physics, 25, 015001(2014).

    [49] Duan X M, Zhang W S, Li L J, et al. Electro-optically cavity-dumped Ho: SSO laser with a pulse width of 3.6 ns and linewidth of 70 pm[J]. Laser Physics, 29, 015802(2018).

    [51] Li Menglong, Gao Long, Shi Wenzong, et al. Progress in all-solid-state single-frequency lasers[J]. Laser & Optoelectronics Progress, 53, 080003(2016).

    [57] Singh U N. Development of high-pulse energy Ho: Tm: YLF coherent transmitters[J]. Laser Radar Technology and Applications, 3380, 70-74(1998).

    [59] Wang Y Y, Liu J H, Li S C, et al. Stable and simple structure passively Q-switched single-longitudinal-mode laser[J]. Chinese Journal of Lasers, 31, 531-534(2004).

    [62] Jin D, Bai Z, Wang Q, et al. Doubly Q-switched single longitudinal mode Nd: YAG laser with electro-optical modulator and Cr4+: YAG[J]. Optics Communications, 463, 125500(2020).

    [68] Strauss H J, Preussler D, Esser M J D, et al. 330 mJ, single-frequency Ho:YLF slab amplifier[J]. Optics Letters, 1022-1024(2013).

    [70] Yan D, Yuan Y, Wang Y P, et al. High-energy, alignment-insensitive, injection-seeded Q-switched Ho:yttrium aluminum garnet single-frequency laser[J]. High Power Laser Science and Engineering, 11, e66(2023).

    [78] Yan D, Wang Y P, Yuan Y, et al. Injection-seeded, Q-switched Ho: YAG laser based on alignment-insensitive corner cone reflectors[J]. Optics & Laser Technology, 166, 109584(2023).

    [87] Wang Y P, Ju Y L, Dai T Y, et al. Single-frequency and free-running operation of a single-pass pulsed Ho: YLF amplifier[J]. High Power Laser Science and Engineering, e39(2020).

    [88] Drs J, Fischer J, Modsching N, et al. A decade of Sub-100-fs thin-disk laser oscillators[J]. Laser & Photonics Reviews, 17, 2200258(2023).

    [89] Song E M, Zhu G Z, Wang H L, et al. Up conversion and excited state absorption analysis in the Tm: YAG disk laser multi-pass pumped by 1 μm laser[J]. High Power Laser Science and Engineering, 9, e8(2021).

    [91] Lian Yudong, Hu Qi, Xie Luyang, et al. Research on the Stokes linewidth characteristics of the pulse compression by stimulated Brillouin scattering in medium FC-770 (invited)[J]. Infrared and Laser Engineering, 52, 20230402(2023).

    [95] Sun Jianing, Wangyulei, Zhangyu, et al. Thermal effect analysis of LD end-pumped Er : Yb : glass / Co : MALO crystal[J]. Infrared and Laser Engineering, 52, 20230349(2023).

    [96] Yang Peng, Ma Lun, Jiang Yanling, et al. Thermal management technology of a liquid cooling thin-disk oscillator[J]. Acta Photonica Sinica, 45, 0314007(2016).

    [97] Wang C H, Shen L F, Zhao Z L, et al. 1.2 MW peak power, all-solid-state picosecond laser with a microchip laser seed and a high gain single-passing bounce geometry amplifier[J]. Optics & Laser Technology, 85, 14-18(2016).

    [98] Gao X Y, Tian Y, Liu Q H, et al. Broadband 2 μm emission characteristics and energy transfer mechanism of Ho3+ doped silicate-germanate glass sensitized by Tm3+ ions[J]. Optics & Laser Technology, 111, 115-120(2019).

    [99] Jiang X Y, Wang Z G, Zhang J G, et al. Thermal management of water-cooled 10 Hz Yb: YAG laser amplifier[J]. High Power Laser and Particle Beams, 32, 011010(2020).

    [101] Cai Y, Gao F, Chen H, et al. Continuous-wave diamond laser with a tunable wavelength in orange–red wavelength band[J]. Optics Communications, 528, 128985(2023).

    Tools

    Get Citation

    Copy Citation Text

    Bingzheng Yan, Xikui Mu, Jiashuo An, Yaoyao Qi, Jie Ding, Zhenxu Bai, Yulei Wang, Zhiwei Lv. Advances in 2 μm single-longitudinal-mode all-solid-state pulsed lasers (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(2): 20230730

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 5, 2024

    Accepted: --

    Published Online: Mar. 27, 2024

    The Author Email: Zhenxu Bai (baizhenxu@hotmail.com)

    DOI:10.3788/IRLA20230730

    Topics