Infrared and Laser Engineering, Volume. 53, Issue 2, 20230730(2024)

Advances in 2 μm single-longitudinal-mode all-solid-state pulsed lasers (cover paper·invited)

Bingzheng Yan1,2, Xikui Mu1,2, Jiashuo An1,2, Yaoyao Qi1,2, Jie Ding1,2, Zhenxu Bai1,2、*, Yulei Wang1,2, and Zhiwei Lv1,2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    References(102)

    [7] T Y Dai, J Wu, L Ju, et al. A tunable and single-longitudinal-mode Ho: YLF laser. Infrared Physics & Technology, 77, 149-152(2016).

    [9] Changdong Niu, Ruifeng Dai, Ruike Liu, et al. Single-longitudinal-mode selection technology and application of solid-state laser. Electro-Optic Technology Application, 35, 38-47(2020).

    [10] Qing Wang, Chunqing Gao. Research progress on eye-safe all-solid-state single-frequency lasers. Chinese Journal of Lasers, 48(2021).

    [15] I Mingareev, F Weirauch, A Olowinsky, et al. Welding of polymers using a 2 μm thulium fiber laser. Optics & Laser Technology, 44, 2095-2099(2012).

    [17] Bingzheng Yan, Zhenxu Bai, Yaoyao Qi, et al. Advances in all-solid-state laser for novel low-dimensional material saturated absorbers (Invited). Electro-Optic Technology Application, 37, 27-39(2022).

    [18] Hao Zheng, Chen Zhao, Fei Zhang, et al. Study on the longitudinal mode characteristic of idler wave in MgO: PPLN infrared optical parametric oscillator. Infrared and Laser Engineering, 52, 20230378(2023).

    [22] Yilan Chen, Xiaolei Zhu, Junxuan Zhang, et al. Development of pulsed single-frequency 2 μm all-solid-state laser. Laser & Optoelectronics Progress, 57, 050006(2020).

    [23] X P Zhang, Z H Wang, S Liu, et al. Development of single-longitudinal-mode selection technology for solid-state lasers. International Journal of Optics, 2021, 6667015(2021).

    [25] K Scholle, S Lamrini, P Koopmann, et al. 2 µm laser sources and their possible applications. Frontiers in Guided Wave Optics & Optoelectronics, 21, 471-500.(2010).

    [27] Hao Zhu, Bohao Wang, Jiayou Tao, et al. Single longitudinal mode laser output through twisted mode cavity method. Journal of Hunan Institute of Science and Technology (Natural Sciences), 34, 13-17(2021).

    [36] [36] Bai Y X, Yu J R, Wong T H, et al. Singlemode, high repetition rate, compact Ho: YLF laser f spacebne lidar applications[C]CLEO: Applications Technology. IEEE, 2014: AW1P. 4.

    [37] T Y Dai, Z G Fan, J Wu, et al. High power single-longitudinal-mode Ho: YLF unidirectional ring laser based on a composite structure of acousto-optic device and wave plate. Infrared Physics & Technology, 82, 40-43(2017).

    [40] J Wu, Y Wu, T Y Dai, et al. Diode pumped high efficiency single-longitudinal-mode Tm, Ho: YAP ring laser. Optical Engineering, 58, 016116(2019).

    [43] Y L Ju, W Liu, B Q Yao, et al. Diode-pumped tunable single-longitudinal-mode Tm, Ho: YAG twisted-mode laser. Chinese Optics Letters, 13, 111403(2015).

    [45] [45] Dai Tongyu, Yao Baoquan, Liu Wei, et al. Singledoped Ho: YAG tunable singlelongitudinalmode laser based on twistedmode technology: CN201410457753.5[P]. 20140910. (in Chinese)

    [46] L Li, Y L Ju, T Y Dai, et al. L-shaped single-longitudinal-mode Tm, Ho: YAG lasers based on twisted mode cavity. Laser & Optoelectronics Progress, 54, 081408(2017).

    [47] C J Jin, Y Bai, L F Li, et al. A single-frequency, graphene-based passively Q-switched Tm: YAP laser. Laser Physics, 25, 015001(2014).

    [49] X M Duan, W S Zhang, L J Li, et al. Electro-optically cavity-dumped Ho: SSO laser with a pulse width of 3.6 ns and linewidth of 70 pm. Laser Physics, 29, 015802(2018).

    [51] Menglong Li, Long Gao, Wenzong Shi, et al. Progress in all-solid-state single-frequency lasers. Laser & Optoelectronics Progress, 53, 080003(2016).

    [57] U N Singh. Development of high-pulse energy Ho: Tm: YLF coherent transmitters. Laser Radar Technology and Applications, 3380, 70-74(1998).

    [59] Y Y Wang, J H Liu, S C Li, et al. Stable and simple structure passively Q-switched single-longitudinal-mode laser. Chinese Journal of Lasers, 31, 531-534(2004).

    [62] D Jin, Z Bai, Q Wang, et al. Doubly Q-switched single longitudinal mode Nd: YAG laser with electro-optical modulator and Cr4+: YAG. Optics Communications, 463, 125500(2020).

    [68] H J Strauss, D Preussler, M J D Esser, et al. 330 mJ, single-frequency Ho:YLF slab amplifier. Optics Letters, 1022-1024(2013).

    [70] D Yan, Y Yuan, Y P Wang, et al. High-energy, alignment-insensitive, injection-seeded Q-switched Ho:yttrium aluminum garnet single-frequency laser. High Power Laser Science and Engineering, 11, e66(2023).

    [78] D Yan, Y P Wang, Y Yuan, et al. Injection-seeded, Q-switched Ho: YAG laser based on alignment-insensitive corner cone reflectors. Optics & Laser Technology, 166, 109584(2023).

    [87] Y P Wang, Y L Ju, T Y Dai, et al. Single-frequency and free-running operation of a single-pass pulsed Ho: YLF amplifier. High Power Laser Science and Engineering, e39(2020).

    [88] J Drs, J Fischer, N Modsching, et al. A decade of Sub-100-fs thin-disk laser oscillators. Laser & Photonics Reviews, 17, 2200258(2023).

    [89] E M Song, G Z Zhu, H L Wang, et al. Up conversion and excited state absorption analysis in the Tm: YAG disk laser multi-pass pumped by 1 μm laser. High Power Laser Science and Engineering, 9, e8(2021).

    [91] Yudong Lian, Qi Hu, Luyang Xie, et al. Research on the Stokes linewidth characteristics of the pulse compression by stimulated Brillouin scattering in medium FC-770 (invited). Infrared and Laser Engineering, 52, 20230402(2023).

    [95] Jianing Sun, Wangyulei, Zhangyu, et al. Thermal effect analysis of LD end-pumped Er : Yb : glass / Co : MALO crystal. Infrared and Laser Engineering, 52, 20230349(2023).

    [96] Peng Yang, Lun Ma, Yanling Jiang, et al. Thermal management technology of a liquid cooling thin-disk oscillator. Acta Photonica Sinica, 45, 0314007(2016).

    [97] C H Wang, L F Shen, Z L Zhao, et al. 1.2 MW peak power, all-solid-state picosecond laser with a microchip laser seed and a high gain single-passing bounce geometry amplifier. Optics & Laser Technology, 85, 14-18(2016).

    [98] X Y Gao, Y Tian, Q H Liu, et al. Broadband 2 μm emission characteristics and energy transfer mechanism of Ho3+ doped silicate-germanate glass sensitized by Tm3+ ions. Optics & Laser Technology, 111, 115-120(2019).

    [99] X Y Jiang, Z G Wang, J G Zhang, et al. Thermal management of water-cooled 10 Hz Yb: YAG laser amplifier. High Power Laser and Particle Beams, 32, 011010(2020).

    [101] Y Cai, F Gao, H Chen, et al. Continuous-wave diamond laser with a tunable wavelength in orange–red wavelength band. Optics Communications, 528, 128985(2023).

    Tools

    Get Citation

    Copy Citation Text

    Bingzheng Yan, Xikui Mu, Jiashuo An, Yaoyao Qi, Jie Ding, Zhenxu Bai, Yulei Wang, Zhiwei Lv. Advances in 2 μm single-longitudinal-mode all-solid-state pulsed lasers (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(2): 20230730

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 5, 2024

    Accepted: --

    Published Online: Mar. 27, 2024

    The Author Email: Bai Zhenxu (baizhenxu@hotmail.com)

    DOI:10.3788/IRLA20230730

    Topics