Optics and Precision Engineering, Volume. 30, Issue 1, 117(2022)

Transfer learning techniques for semantic segmentation of machine vision inspection and identification based on label-reserved Softmax algorithms

Guixiong LIU* and Jian HUANG
Author Affiliations
  • School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510640, China
  • show less
    References(20)

    [1] [1] 1卢荣胜, 吴昂, 张腾达, 等. 自动光学(视觉)检测技术及其在缺陷检测中的应用综述[J]. 光学学报, 2018, 38(8): 23-58. doi: 10.3788/aos201838.0815002LUR SH, WUA, ZHANGT D, et al. Review on automated optical (visual) inspection and its applications in defect detection[J]. Acta Optica Sinica, 2018, 38(8): 23-58. (in Chinese). doi: 10.3788/aos201838.0815002

    [2] [2] 2范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学 精密工程, 2020, 28(5): 1152-1164.FANL L, ZHAOH W, ZHAOH Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Opt. Precision Eng., 2020, 28(5): 1152-1164. (in Chinese)

    [3] [3] 3黄坚, 刘桂雄. 面向机器视觉检测的CNN语义分割方法进展[J]. 激光杂志, 2019, 40(5): 10-16. doi: 10.14016/j.cnki.jgzz.2019.05.010HUANGJ, LIUG X. The development of CNN-based semantic segmentation method for machine vision detection[J]. Laser Journal, 2019, 40(5): 10-16. (in Chinese). doi: 10.14016/j.cnki.jgzz.2019.05.010

    [4] Q SHI, Y P ZHANG, X P LIU et al. Regularised transfer learning for hyperspectral image classification. IET Computer Vision, 13, 188-193(2019).

    [5] [5] 5刘桂雄, 黄坚, 刘思洋, 等. 面向语义分割机器视觉的AutoML方法[J]. 激光杂志, 2019, 40(6): 1-9. doi: 10.14016/j.cnki.jgzz.2019.06.001LIUG X, HUANGJ, LIUS Y, et al. AutoML method for semantic segmentation of machine vision[J]. Laser Journal, 2019, 40(6): 1-9. (in Chinese). doi: 10.14016/j.cnki.jgzz.2019.06.001

    [7] O RUSSAKOVSKY, J DENG, H SU et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115, 211-252(2015).

    [8] T Y LIN, M MAIRE, S BELONGIE et al. Microsoft COCO: common objects in context, 740-755(2014).

    [9] [9] 9张雪松, 庄严, 闫飞, 等. 基于迁移学习的类别级物体识别与检测研究与进展[J]. 自动化学报, 2019, 45(7): 1224-1243. doi: 10.16383/j.aas.c180093ZHANGX S, ZHUANGY, YANF, et al. Status and development of transfer learning based category-level object recognition and detection[J]. Acta Automatica Sinica, 2019, 45(7): 1224-1243. (in Chinese). doi: 10.16383/j.aas.c180093

    [10] [10] 10冯毅雄, 赵彬, 郑浩, 等. 集成迁移学习的轴件表面缺陷实时检测[J]. 计算机集成制造系统, 2019, 25(12): 3199-3208. doi: 10.13196/j.cims.2019.12.021FENGY X, ZHAOB, ZHENGH, et al. Real-time detection of shaft surface defects based on integrated transfer learning[J]. Computer Integrated Manufacturing Systems, 2019, 25(12): 3199-3208. (in Chinese). doi: 10.13196/j.cims.2019.12.021

    [11] X FANG, W JIE, T FENG. An industrial micro-defect diagnosis system via intelligent segmentation region. Sensors, 19, 2636(2019).

    [12] D J XI, Y QIN, Y Y WANG. Vision measurement of gear pitting under different scenes by deep mask R-CNN. Sensors, 20, 4298(2020).

    [13] [13] 13王建林, 付雪松, 黄展超, 等. 改进YOLOv2卷积神经网络的多类型合作目标检测[J]. 光学 精密工程, 2020, 28(1): 251-260. doi: 10.3788/ope.20202801.0251WANGJ L, FUX S, HUANGZH CH, et al. Multi-type cooperative targets detection using improved YOLOv2 convolutional neural network[J]. Opt. Precision Eng., 2020, 28(1): 251-260. (in Chinese). doi: 10.3788/ope.20202801.0251

    [14] [14] 14陈筱, 朱向冰, 吴昌凡, 等. 基于迁移学习与特征融合的眼底图像分类[J]. 光学 精密工程, 2021, 29(2): 388-399. doi: 10.37188/OPE.20212902.0388CHENX, ZHUX B, WUCH F, et al. Research on fundus image classification based on transfer learning and feature fusion[J]. Opt. Precision Eng., 2021, 29(2): 388-399. (in Chinese). doi: 10.37188/OPE.20212902.0388

    [15] D HOIEM, Y CHODPATHUMWAN, Q Y DAI. Diagnosing error in object detectors, 340-353(2012).

    [16] K M HE, J SUN. Convolutional neural networks at constrained time cost, 5353-5360(2015).

    [17] K M HE, G GKIOXARI, P DOLLÁR et al. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 386-397(2020).

    [18] G GETTO, J T LABRIOLA. iFixit myself: user-generated content strategy in 'the free repair guide for everything'. IEEE Transactions on Professional Communication, 59, 37-55(2016).

    [19] [19] 19黄爱民. 面向标准件机箱装配质量图像特征提取与构建方法研究[D]. 广州: 华南理工大学, 2017.HUANGA M. Research on the Technology of Machine Evaluation and Classification Based on the Assembly Quality of Standard Chassis[D]. Guangzhou: South China University of Technology, 2017. (in Chinese)

    [20] S A REBUFFI, A KOLESNIKOV, G SPERL et al. iCaRL: incremental classifier and representation learning, 5533-5542(2017).

    Tools

    Get Citation

    Copy Citation Text

    Guixiong LIU, Jian HUANG. Transfer learning techniques for semantic segmentation of machine vision inspection and identification based on label-reserved Softmax algorithms[J]. Optics and Precision Engineering, 2022, 30(1): 117

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: May. 16, 2021

    Accepted: --

    Published Online: Jan. 20, 2022

    The Author Email: LIU Guixiong (megxliu@scut.edu.cn)

    DOI:10.37188/OPE.20223001.0117

    Topics