Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1962(2024)
Microstructure and Properties of BiScO3-PbTiO3-Bi(Zn2/3Nb1/3)O3 High-Temperature Perovskite Ceramics
[1] [1] HAERTLING G H. Ferroelectric ceramics: History and technology[J]. J Am Ceram Soc, 1999, 82(4): 797-818.
[2] [2] WU Jingen, GAO Xiangyu, CHEN Jianguo, et al. Acta Phys Sin, 2018, 67(20): 10-39.
[3] [3] LIU Z H, WU H, YUAN Y, et al. Recent progress in bismuth-based high Curie temperature piezo-ferroelectric perovskites for electromechanical transduction applications[J]. Curr Opin Solid State Mater Sci, 2022, 26(5): 101016.
[4] [4] DONG Y Z, ZOU K, LIANG R H, et al. Review of BiScO3-PbTiO3 piezoelectric materials for high temperature applications: fundamental, progress, and perspective[J]. Prog Mater Sci, 2023, 132: 101026.
[5] [5] HOU Yudong, ZHAO Haiyan, ZHENG Mupeng, et al. J Beijing Univ Technol, 2020, 46(6): 664-679.
[6] [6] YAO Z H, LIU H X, HAO H A, et al. Structure, electrical properties, and depoling mechanism of BiScO3-PbTiO3-Pb(Zn1/3Nb2/3)O3 high-temperature piezoelectric ceramics[J]. J Appl Phys, 2011, 109(1): 014105
[7] [7] TALANOV M V, BUSH A A, КAMENTSEV K E, et al. Structure-property relationships in BiScO3-PbTiO3-PbMg1/3Nb2/3O3 ceramics near the morphotropic phase boundary[J]. J Am Ceram Soc, 2018, 101(2): 683-693.
[8] [8] DONG Y Z, ZHOU Z Y, LIANG R H, et al. Excellent piezoelectric constant and thermal stability in BiScO3-PbTiO3 piezoelectric ceramics via domain engineering[J]. J Materiomics, 2022, 8(2): 319-326.
[9] [9] DONG Y Z, ZHAO K Y, ZHOU Z Y, et al. High piezoelectricity with broad temperature insensitivity in BiScO3-PbTiO3-based piezoceramics[J]. J Am Ceram Soc, 2022, 105(11): 6898-6909.
[10] [10] ZHAO H Y, YANG H J, GUO Q Q. Large piezoelectricity in BiScO3-PbTiO3 based perovskite ceramics for high-temperature energy harvesting[J]. Ceram Int, 2022, 48(23): 35127-35133.
[11] [11] EITEL R E, RANDALL C A, SHROUT T R, et al. New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics[J]. Jpn J Appl Phys, 2001, 40(10R): 5999.
[12] [12] YASHIMA M, OMOTO K, CHEN J, et al. Evidence for (Bi, Pb)-O covalency in the high TC ferroelectric PbTiO3-BiFeO3 with large tetragonality[J]. Chem Mater, 2011, 23(13): 3135-3137.
[13] [13] GRINBERG I, SUCHOMEL M R, DAVIES P K, et al. Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations[J]. J Appl Phys, 2005, 98(9): 094111.
[14] [14] ZHAO H Y, HOU Y D, YU X L, et al. A wide temperature insensitive piezoceramics for high-temperature energy harvesting[J]. J Am Ceram Soc, 2019, 102(9): 5316-5327.
[15] [15] YU X L, HOU Y D, ZHAO H Y, et al. Refreshing doping concept in perovskite piezoceramics: composite modulation hidden behind lattice substitution[J]. J Am Ceram Soc, 2020, 103(11): 6378-6388.
[16] [16] ZHANG J, PAN Z, GUO F F, et al. Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics[J]. Nat Commun, 2015, 6: 6615.
[17] [17] DONG Y Z, ZHOU Z Y, LIANG R H, et al. Correlation between the grain size and phase structure, electrical properties in BiScO3-PbTiO3-based piezoelectric ceramics[J]. J Am Ceram Soc, 2020, 103(9): 4785-4793.
[18] [18] KOWALSKI B A, SEHIRLIOGLU A, DYNYS F W, et al. Characterization of the high-temperature ferroelectric (100-x-y) BiScO3-(x)Bi(Zr0.5Zn0.5)O3-(y)PbTiO3 perovskite ternary solid solution[J]. J Am Ceram Soc, 2014, 97(2): 490-497.
[19] [19] LI F, LIN D B, CHEN Z B, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nat Mater, 2018, 17(4): 349-354.
[20] [20] GUO Q H, LI F, XIA F Q, et al. High-performance Sm-doped Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3-based piezoceramics[J]. ACS Appl Mater Interfaces, 2019, 11(46): 43359-43367.
[21] [21] HUANG C C, CAI K, WANG Y C, et al. Revealing the real high temperature performance and depolarization characteristics of piezoelectric ceramics by combined in situ techniques[J]. J Mater Chem C, 2018, 6(6): 1433-1444.
[22] [22] ZHAO H Y, HOU Y D, ZHENG M P, et al. Revealing the origin of thermal depolarization in piezoceramics by combined multiple in-situ techniques[J]. Mater Lett, 2019, 236: 633-636.
[23] [23] FANG M X, RAJPUT S, DAI Z H, et al. Understanding the mechanism of thermal-stable high-performance piezoelectricity[J]. Acta Mater, 2019, 169: 155-161.
[24] [24] LI F, XU Z, WEI X Y, et al. Temperature- and dc bias field-dependent piezoelectric effect of soft and hard lead zirconate titanate ceramics[J]. J Electroceram, 2010, 24(4): 294-299.
Get Citation
Copy Citation Text
ZHAO Haiyan, YANG Huijing, GUO Qiangqiang, ZHANG Shuning. Microstructure and Properties of BiScO3-PbTiO3-Bi(Zn2/3Nb1/3)O3 High-Temperature Perovskite Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1962
Category:
Received: Nov. 6, 2023
Accepted: --
Published Online: Aug. 26, 2024
The Author Email: Haiyan ZHAO (cnzhaohy@163.com)