Acta Optica Sinica, Volume. 42, Issue 17, 1704001(2022)

Absorbing Metasurfaces and Their Applications in the Mid-Infrared Band

Yuwei Sun1, Nan He1, Zhi Zhang1, Xinan Xu1, Liu Yang1, Yi Jin1、*, Yuxin Xing2、**, and Sailing He1,2
Author Affiliations
  • 1Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • 2Shanghai Institute for Advanced Study of Zhejiang University, Shanghai 201203, China
  • show less
    References(115)

    [1] Meléndez J, de Castro A J, López F et al. Spectrally selective gas cell for electrooptical infrared compact multigas sensor[J]. Sensors and Actuators A, 47, 417-421(1995).

    [2] Xing Y X, Vincent T A, Cole M et al. Real-time thermal modulation of high bandwidth MOX gas sensors for mobile robot applications[J]. Sensors, 19, 1180(2019).

    [3] Tan X C, Zhang H, Li J Y et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors[J]. Nature Communications, 11, 5245(2020).

    [4] Rodrigo D, Limaj O, Janner D et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 349, 165-168(2015).

    [5] Tittl A, Leitis A, Liu M K et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105-1109(2018).

    [6] Wang L, Wang H M, Wagner M et al. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy[J]. Science Advances, 3, e1700255(2017).

    [7] Cui Y X, He Y R, Jin Y et al. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 8, 495-520(2014).

    [8] Alaee R, Albooyeh M, Rockstuhl C. Theory of metasurface based perfect absorbers[J]. Journal of Physics D, 50, 503002(2017).

    [9] Zhong S M, He S L. Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials[J]. Scientific Reports, 3, 2083(2013).

    [10] Jin Y, Xiao S S, Mortensen N A et al. Arbitrarily thin metamaterial structure for perfect absorption and giant magnification[J]. Optics Express, 19, 11114-11119(2011).

    [11] Zhong S M, Ma Y G, He S L. Perfect absorption in ultrathin anisotropic ε‑near-zero metamaterials[J]. Applied Physics Letters, 105, 023504(2014).

    [12] Jiang W, Ma Y G, Yuan J et al. Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramers-Kronig permittivity profile[J]. Laser & Photonics Reviews, 11, 1600253(2017).

    [13] Qu C, Ma S J, Hao J M et al. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 115, 235503(2015).

    [14] Liu X L, Starr T, Starr A F et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Physical Review Letters, 104, 207403(2010).

    [15] Yong Z D, Zhang S L, Gong C S et al. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications[J]. Scientific Reports, 6, 24063(2016).

    [16] Mo L, Yang L, Nadzeyka A et al. Enhanced broadband absorption in gold by plasmonic tapered coaxial holes[J]. Optics Express, 22, 32233-32244(2014).

    [17] Zhang F, Yang L, Jin Y et al. Turn a highly-reflective metal into an omnidirectional broadband absorber by coating a purely-dielectric thin layer of grating[J]. Progress in Electromagnetics Research, 134, 95-109(2013).

    [18] Chi K Q, Yang L, He S L. Ultrathin nanostructured solar selective absorber based on a two-dimensional hemispherical shell array[J]. Applied Physics Letters, 112, 063903(2018).

    [19] Yang L, Kou P F, He N et al. Anomalous light trapping enhancement in a two-dimensional gold nanobowl array with an amorphous silicon coating[J]. Optics Express, 25, 14114-14124(2017).

    [20] Yang L, Mo L, Okuno Y et al. Optimal design of ultra-broadband, omnidirectional, and polarization-insensitive amorphous silicon solar cells with a core-shell nanograting structure[J]. Progress in Photovoltaics, 21, 1077-1086(2013).

    [21] Zhu X Y, Fu J C, Ding F et al. Angle-insensitive narrowband optical absorption based on high-Q localized resonance[J]. Scientific Reports, 8, 15240(2018).

    [22] He X, Jie J, Yang J et al. A mid-infrared narrowband absorber based on a subwavelength fine-structured silicon-gold metagrating[J]. Applied Sciences, 9, 5022(2019).

    [23] Soydan M C, Ghobadi A, Yildirim D U et al. Lithography‐free random bismuth nanostructures for full solar spectrum harvesting and mid‐infrared sensing[J]. Advanced Optical Materials, 8, 1901203(2020).

    [24] Fan K B, Shadrivov I V, Miroshnichenko A E et al. Infrared all-dielectric Kerker metasurfaces[J]. Optics Express, 29, 10518-10526(2021).

    [25] Ming X S, Liu X Y, Sun L Q et al. Degenerate critical coupling in all-dielectric metasurface absorbers[J]. Optics Express, 25, 24658-24669(2017).

    [26] Tian J Y, Luo H, Li Q et al. Near-infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures[J]. Laser & Photonics Reviews, 12, 1800076(2018).

    [27] Xu R Y, Takahara J. All-dielectric perfect absorber based on quadrupole modes[J]. Optics Letters, 46, 3596-3599(2021).

    [28] Piper J R, Liu V, Fan S H. Total absorption by degenerate critical coupling[J]. Applied Physics Letters, 104, 251110(2014).

    [29] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 6, 7998-8006(2012).

    [30] Zhang B X, Zhao Y H, Hao Q Z et al. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array[J]. Optics Express, 19, 15221-15228(2011).

    [31] Cui Y X, Xu J, Fung K H et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters, 99, 253101(2011).

    [32] Cui Y X, Fung K H, Xu J et al. Multiband plasmonic absorber based on transverse phase resonances[J]. Optics Express, 20, 17552-17559(2012).

    [33] Ma W, Wen Y Z, Yu X M. Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators[J]. Optics Express, 21, 30724-30730(2013).

    [34] Bossard J A, Lin L, Yun S et al. Near-ideal optical metamaterial absorbers with super-octave bandwidth[J]. ACS Nano, 8, 1517-1524(2014).

    [35] He J L, He S L. Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate[J]. IEEE Microwave and Wireless Components Letters, 16, 96-98(2006).

    [36] He S L, He Y R, Jin Y. Revealing the truth about ‘trapped rainbow’ storage of light in metamaterials[J]. Scientific Reports, 2, 583(2012).

    [37] Ding F, Cui Y X, Ge X C et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 100, 103506(2012).

    [38] Ye Y Q, Jin Y, He S. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J]. Journal of the Optical Society of America B, 27, 498-504(2010).

    [39] Cui Y X, Fung K H, Xu J et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 12, 1443-1447(2012).

    [40] Dayal G, Ramakrishna S A. Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks[J]. Journal of Optics, 15, 055106(2013).

    [41] He S L, Chen T. Broadband THz absorbers with graphene-based anisotropic metamaterial films[J]. IEEE Transactions on Terahertz Science and Technology, 3, 757-763(2013).

    [42] Ding F, Jin Y, Li B et al. Ultrabroadband strong light absorption based on thin multilayered metamaterials[J]. Laser & Photonics Reviews, 8, 946-953(2014).

    [43] He S L, Ding F, Mo L et al. Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films (invited paper)[J]. Progress in Electromagnetics Research, 147, 69-79(2014).

    [44] Ji T, Peng L N, Zhu Y T et al. Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers[J]. Applied Physics Letters, 106, 161107(2015).

    [45] Bao Z Y, Wang J C, Hu Z D et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express, 27, 31435-31445(2019).

    [46] He W J, Feng Y, Hu Z D et al. Sensors with multifold nanorod metasurfaces array based on hyperbolic metamaterials[J]. IEEE Sensors Journal, 20, 1801-1806(2020).

    [47] Bao Z Y, Wang J C, Hu Z D et al. Coordination multi-band absorbers with patterned irrelevant graphene patches based on multi-layer film structures[J]. Journal of Physics D, 54, 505306(2021).

    [48] Bly V T, Cox J T. Infrared absorber for ferroelectric detectors[J]. Applied Optics, 33, 26-30(1994).

    [49] Corrigan T D, Park D H, Drew H D et al. Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers[J]. Applied Optics, 51, 1109-1114(2012).

    [50] Ding F, Mo L, Zhu J F et al. Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber[J]. Applied Physics Letters, 106, 061108(2015).

    [51] Wang W Y, Cui Y X, He Y R et al. Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate[J]. Optics Letters, 39, 331-334(2014).

    [52] Shen H J, Yang L, Jin Y et al. Perfect mid-infrared dual-band optical absorption realized by a simple lithography-free polar dielectric/metal double-layer nanostructure[J]. Optics Express, 28, 31414-31424(2020).

    [53] Zhou H, Ding F, Jin Y et al. Terahertz metamaterial modulators based on absorption[J]. Progress in Electromagnetics Research, 119, 449-460(2011).

    [54] Liu X Y, Padilla W. Reconfigurable room temperature metamaterial infrared emitter[J]. Optica, 4, 430-433(2017).

    [55] Fan K B, Suen J, Wu X Y et al. Graphene metamaterial modulator for free-space thermal radiation[J]. Optics Express, 24, 25189-25201(2016).

    [56] Zeng B B, Huang Z Q, Singh A et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging[J]. Light: Science & Applications, 7, 51(2018).

    [57] Kocer H, Butun S, Banar B et al. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures[J]. Applied Physics Letters, 106, 161104(2015).

    [58] Liu L, Kang L, Mayer T S et al. Hybrid metamaterials for electrically triggered multifunctional control[J]. Nature Communications, 7, 13236(2016).

    [59] Cao T, Zhang X Y, Dong W L et al. Tuneable thermal emission using chalcogenide metasurface[J]. Advanced Optical Materials, 6, 1800169(2018).

    [60] Planck M. Ueber das gesetz der energieverteilung im normalspectrum[J]. Annalen Der Physik, 309, 553-563(1901).

    [61] Liu N, Mesch M, Weiss T et al. Infrared perfect absorber and its application As plasmonic sensor[J]. Nano Letters, 10, 2342-2348(2010).

    [62] Li W, Fan S H. Nanophotonic control of thermal radiation for energy applications[J]. Optics Express, 26, 15995-16021(2018).

    [63] Baranov D G, Xiao Y Z, Nechepurenko I A et al. Nanophotonic engineering of far-field thermal emitters[J]. Nature Materials, 18, 920-930(2019).

    [64] de Zoysa M, Asano T, Mochizuki K et al. Conversion of broadband to narrowband thermal emission through energy recycling[J]. Nature Photonics, 6, 535-539(2012).

    [65] Inoue T, de Zoysa M, Asano T et al. Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals[J]. Applied Physics Letters, 102, 191110(2013).

    [66] Guo Y, Fan S H. Narrowband thermal emission from a uniform tungsten surface critically coupled with a photonic crystal guided resonance[J]. Optics Express, 24, 29896-29907(2016).

    [67] Liu X L, Tyler T, Starr T et al. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Physical Review Letters, 107, 045901(2011).

    [68] Liu B A, Gong W, Yu B W et al. Perfect thermal emission by nanoscale transmission line resonators[J]. Nano Letters, 17, 666-672(2017).

    [69] Yang Z Y, Ishii S, Yokoyama T et al. Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons[J]. ACS Photonics, 4, 2212-2219(2017).

    [70] Wang Z Y, Clark J K, Ho Y L et al. Narrowband thermal emission realized through the coupling of cavity and Tamm plasmon resonances[J]. ACS Photonics, 5, 2446-2452(2018).

    [71] He M Z, Nolen J R, Nordlander J et al. Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control[J]. Nature Materials, 20, 1663-1669(2021).

    [72] Narayanaswamy A, Mayo J, Canetta C. Infrared selective emitters with thin films of polar materials[J]. Applied Physics Letters, 104, 183107(2014).

    [73] Mann D, Kato Y K, Kinkhabwala A et al. Electrically driven thermal light emission from individual single-walled carbon nanotubes[J]. Nature Nanotechnology, 2, 33-38(2007).

    [74] Greffet J J, Carminati R, Joulain K et al. Coherent emission of light by thermal sources[J]. Nature, 416, 61-64(2002).

    [75] Chalabi H, Alù A, Brongersma M L. Focused thermal emission from a nanostructured SiC surface[J]. Physical Review B, 94, 094307(2016).

    [76] Inampudi S, Cheng J R, Salary M M et al. Unidirectional thermal radiation from a SiC metasurface[J]. Journal of the Optical Society of America B, 35, 39-46(2017).

    [77] Park J H, Han S E, Nagpal P et al. Observation of thermal beaming from tungsten and molybdenum Bull’s eyes[J]. ACS Photonics, 3, 494-500(2016).

    [78] Argyropoulos C, Le K Q, Mattiucci N et al. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces[J]. Physical Review B, 87, 205112(2013).

    [79] Liberal I, Engheta N. Manipulating thermal emission with spatially static fluctuating fields in arbitrarily shaped epsilon-near-zero bodies[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 2878-2883(2018).

    [80] Xu J, Mandal J, Raman A P. Broadband directional control of thermal emission[J]. Science, 372, 393-397(2021).

    [81] Ying Y B, Ma B Z, Yu J B et al. Whole LWIR directional thermal emission based on ENZ thin films[J]. Laser & Photonics Reviews, 2200018(2022).

    [82] Schuller J A, Taubner T, Brongersma M L. Optical antenna thermal emitters[J]. Nature Photonics, 3, 658-661(2009).

    [83] Lee J C W, Chan C T. Circularly polarized thermal radiation from layer-by-layer photonic crystal structures[J]. Applied Physics Letters, 90, 051912(2007).

    [84] Wu C, Arju N, Kelp G et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances[J]. Nature Communications, 5, 3892(2014).

    [85] Dahan N, Gorodetski Y, Frischwasser K et al. Geometric Doppler effect: spin-split dispersion of thermal radiation[J]. Physical Review Letters, 105, 136402(2010).

    [86] Coppens Z J, Valentine J G. Spatial and temporal modulation of thermal emission[J]. Advanced Materials, 29, 1701275(2017).

    [87] Inoue T, de Zoysa M, Asano T et al. Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters[J]. Applied Physics Express, 7, 012103(2014).

    [88] Inoue T, Zoysa M D, Asano T et al. Realization of dynamic thermal emission control[J]. Nature Materials, 13, 928-931(2014).

    [89] Brar V W, Sherrott M C, Jang M S et al. Electronic modulation of infrared radiation in graphene plasmonic resonators[J]. Nature Communications, 6, 7032(2015).

    [90] Mori T, Yamauchi Y, Honda S et al. An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes[J]. Nano Letters, 14, 3277-3283(2014).

    [91] Kats M A, Blanchard R, Zhang S Y et al. Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance[J]. Physical Review X, 3, 041004(2013).

    [92] Du K K, Li Q, Lü Y B et al. Control over emissivity of zero-static-power thermal emitters based on phase changing material GST[J]. Light:Science & Applications, 6, e16194(2017).

    [93] Peng L, Liu D Q, Cheng H F et al. A multilayer film based selective thermal emitter for infrared stealth technology[J]. Advanced Optical Materials, 6, 1801006(2018).

    [94] Zhao L, Liu H, He Z H et al. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth[J]. Applied Optics, 57, 1757-1764(2018).

    [95] Li L, Shi M K, Liu X Y et al. Ultrathin titanium carbide (MXene) films for high‐temperature thermal camouflage[J]. Advanced Functional Materials, 31, 2101381(2021).

    [96] Zhu H Z, Li Q, Zheng C Q et al. High-temperature infrared camouflage with efficient thermal management[J]. Light: Science & Applications, 9, 60(2020).

    [97] Xiao L, Ma H, Liu J K et al. Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films[J]. Nano Letters, 15, 8365-8370(2015).

    [98] Qu Y R, Li Q, Cai L et al. Thermal camouflage based on the phase-changing material GST[J]. Light: Science & Applications, 7, 26(2018).

    [99] Salihoglu O, Uzlu H B, Yakar O et al. Graphene-based adaptive thermal camouflage[J]. Nano Letters, 18, 4541-4548(2018).

    [100] Kim T, Bae J Y, Lee N et al. Hierarchical metamaterials for multispectral camouflage of infrared and microwaves[J]. Advanced Functional Materials, 29, 1807319(2019).

    [101] Pan M Y, Huang Y, Li Q et al. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures[J]. Nano Energy, 69, 104449(2020).

    [102] Zhu H Z, Li Q, Tao C N et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling[J]. Nature Communications, 12, 1805(2021).

    [103] Yakushev M V, Brunev D V, Varavin V S et al. A 288×4 linear-array photodetector based on Hg vacancy-doped HgCdTe with long-wave cutoff wavelength greater than 12 μm[J]. Infrared Physics & Technology, 69, 107-110(2015).

    [104] Nordin L, Petluru P, Kamboj A et al. Ultra-thin plasmonic detectors[J]. Optica, 8, 1545-1551(2021).

    [105] Nie X F, Zhen H L, Huang G S et al. Strongly polarized quantum well infrared photodetector with metallic cavity for narrowband wavelength selective detection[J]. Applied Physics Letters, 116, 161107(2020).

    [106] Tang X, Wu G F, Lai K W C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared[J]. Journal of Materials Chemistry C, 5, 362-369(2017).

    [107] Lochbaum A, Dorodnyy A, Koch U et al. Compact mid-infrared gas sensing enabled by an all-metamaterial design[J]. Nano Letters, 20, 4169-4176(2020).

    [108] Dao T D, Ishii S, Doan A T et al. An on-chip quad-wavelength pyroelectric sensor for spectroscopic infrared sensing[J]. Advanced Science, 6, 1900579(2019).

    [109] Jiang S, Li J Y, Li J Z et al. Genetic optimization of plasmonic metamaterial absorber towards dual-band infrared imaging polarimetry[J]. Optics Express, 28, 22617-22629(2020).

    [110] Liu C Y, Guo J S, Yu L W et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared[J]. Light: Science & Applications, 10, 123(2021).

    [111] Zhang M Y, Yeow J T W. A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite[J]. Carbon, 156, 339-345(2020).

    [112] Azar N S, Shrestha V R, Crozier K B. Bull’s eye grating integrated with optical nanoantennas for plasmonic enhancement of graphene long-wave infrared photodetectors[J]. Applied Physics Letters, 114, 091108(2019).

    [113] Li J Y, Bao L, Jiang S et al. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging[J]. Optics Express, 27, 8375-8386(2019).

    [114] Li W, Coppens Z J, Besteiro L V et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials[J]. Nature Communications, 6, 8379(2015).

    [115] Peng J Y, Cumming B P, Gu M. Direct detection of photon spin angular momentum by a chiral graphene mid-infrared photodetector[J]. Optics Letters, 44, 2998-3001(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yuwei Sun, Nan He, Zhi Zhang, Xinan Xu, Liu Yang, Yi Jin, Yuxin Xing, Sailing He. Absorbing Metasurfaces and Their Applications in the Mid-Infrared Band[J]. Acta Optica Sinica, 2022, 42(17): 1704001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Detectors

    Received: Jun. 27, 2022

    Accepted: Jul. 28, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Jin Yi (jinyi_2008@zju.edu.cn), Xing Yuxin (y.xing@zju.edu.cn)

    DOI:10.3788/AOS202242.1704001

    Topics