Journal of Innovative Optical Health Sciences, Volume. 8, Issue 2, 1550003(2015)
A saccharides sensor developed by symmetrical optical waveguide-based surface plasmon resonance
[1] [1] N. Soh, M. Sonezaki, T. Imato, "Modification of a thin gold film with boronic acid membrane and its application to a saccharide sensor based on surface plasmon resonance," Electroanalysis 15, 1281–1290 (2003).
[2] [2] R. B. Gennis, Biomembranes: Molecular Structure and Functions, Springer (1989).
[3] [3] F. Ellouz, A. Adam, R. Ciorbaru, E. Lederer, "Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives," Biochem. Biophys. Res. Commun. 59, 1317–1325 (1974).
[4] [4] P. Collins, R. Ferrier, Monosaccharides: Their Chemistry and their Roles in Natural Products, Wiley (1995).
[5] [5] M. Lee, T. I. Kim, K. H. Kim, J. H. Kim, M. S. Choi, H. J. Choi, K. Koh, "Formation of a self-assembled phenylboronic acid monolayer and its application toward developing a surface plasmon resonancebased monosaccharide sensor," Anal. Biochem. 310, 163–170 (2002).
[6] [6] X. J. Huang, W. T. Kok, "Determination of sugars by capillary electrophoresis with electrochemical detection using cuprous oxide modified electrodes," J. Chromatogr. A 707, 335–342 (1995).
[7] [7] W. S. Todd, R. S. Samuel, A. E. Craig, R. W. Joseph, J. O. Peter, "An enzymatic fluorometric assay for fructose," Anal. Biochem. 280, 329–331 (2000).
[8] [8] N. P. Evmiridis, N. K. Thanasoulias, A. G. Vlessidis, "Determination of glucose and fructose in mixtures by a kinetic method with chemiluminescence detection," Anal. Chim. Acta 398, 191–203 (1999).
[9] [9] D. T. Fu, R. A. Oneill, "Monosaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography," Anal. Biochem. 227, (1995) 377–384.
[10] [10] H. Kwon, J. Kim, "Determination of monosaccharides in glycoproteins by reverse-phase high performance liquid chromatography," Anal. Biochem. 215, 243–252 (1993).
[11] [11] K. R. Anumula, "Quantitative determination of monosaccharides in glycoproteins by high performance liquid chromatography with highly sensitive fluorescence detection," Anal. Biochem. 220, 275– 283 (1994).
[12] [12] Z. L. Chen, D. B. Hibbert, "Simultaneous amperometric and potentiometric detection of sugars, polyols and carboxylic acids in flow systems using copper wire electrodes," J. Chromatogr. A 766, 27– 33 (1997).
[13] [13] T. D. James, K. R. A. Sandanayake, S. Shinkai, "Saccharide sensing with molecular receptors based on boronic acid," Angew. Chem. Int. Ed. 35, 1910– 1922 (1996).
[14] [14] J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chem. Rev. 108, 462–493 (2008).
[15] [15] Q. Wei, Y. Zhao, B. Du, D. Wu, H. Li, M. Yang, "Ultrasensitive detection of kanamycin in animal derived foods by label-free electrochemical immunosensor," Food Chem. 134, 1601–1606 (2012).
[16] [16] F. Bardin, A. Bellemain, G. Roger, M. Canva, "Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization," Biosens. Bioelectron. 24, 2100–2105 (2009).
[17] [17] X. Wang, M. Je erson, P. C. D. Hobbs, W. P. Risk, B. E. Feller, R. D. Miller, A. Knoesen, "Shot-noise limited detection for surface plasmon sensing," Opt. Express 19, 107–117 (2011).
[18] [18] H. Shi, Z. Y. Liu, X. X. Wang, J. Guo, L. Liu, L. Luo, J. H. Guo, H. Ma, S. Q. Sun, Y. H. He, "A symmetrical optical waveguide based surface plasmon resonance biosensing system," Sens. Actuators B Chem. 185, 91–96 (2013).
[19] [19] J. Homola, S. S. Yee, G. Gauglitz, "Surface plasmon resonance sensors: Review," Sens. Actuators B Chem. 54, 3–15 (1999).
[20] [20] D. G. Hall, Boronic Acids: Preparation, Application in Organic Synthesis and Medicine, Wiley (2005).
[21] [21] W. Yang, X. Gao, B. Wang, "Boronic acids as potential pharmaceutical agents," Med. Res. Rev. 23, 346–368 (2003).
[22] [22] H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, "Mussel-inspired surface chemistry for multifunctional coatings," Science 318, 426–430 (2007).
[23] [23] J. G. Rivera, P. B. Messersmith, "Polydopamineassisted immobilization of trypsin onto monolithic structures for protein digestion," J. Sep. Sci. 35, 1514–1520 (2012).
[24] [24] E. Kretschman, "The determination of the optical constants of metals by the excitation of surface plasmons," Z. Phys. 241, 313–324 (1971).
[25] [25] J. S. Hansen, J. B. Christensen, J. F. Petersen, T. Hoeg-Jensen, J. C. Norrild, "Arylboronic acids: A diabetic eye on glucose sensing," Sens. Actuators B Chem. 161, 45–79 (2012).
[26] [26] S. Pohoja, "The glucose content of the aqueous humour in man," Dissertation, University of Helsinki (1966).
[27] [27] J. Trevi o, A. Calle, J. M. Rodríguez-Frade, M. Mellado, L. M. Lechuga, "Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay," Talanta 78, 1011–1016 (2009).
[28] [28] P. Nilsson, B. Persson, A. Larsson, M. Uhlen, P. A. Nygren, "Detection of mutations in PCR products from clinical samples by surface plasmon resonance," J. Mol. Recognit. 10, 7–17 (1997).
Get Citation
Copy Citation Text
Ang Li, Zhouyi Guo, Qing Peng, Chan Du, Xida Han, Le Liu, Jun Guo, Yonghong He, Yanhong Ji. A saccharides sensor developed by symmetrical optical waveguide-based surface plasmon resonance[J]. Journal of Innovative Optical Health Sciences, 2015, 8(2): 1550003
Received: Nov. 5, 2013
Accepted: Mar. 16, 2014
Published Online: Jan. 10, 2019
The Author Email: He Yonghong (heyh@sz.tsinghua.edu.cn)