Opto-Electronic Engineering, Volume. 49, Issue 9, 220007(2022)

Nighttime sea fog recognition based on remote sensing satellite and deep neural decision tree

Tao Li... Wei Jin*, Randi Fu, Gang Li and Caoqian Yin |Show fewer author(s)
Author Affiliations
  • Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
  • show less
    Figures & Tables(9)
    Overall algorithm flow chart
    An example of the model inference process
    Sea fog identification result at UTC 18:20 on June 5, 2020 in the Yellow Sea and Bohai Sea
    The monitoring results of sea fog in the Yellow Sea and Bohai Sea from 15:00 to 20:00 UTC on June 5, 2020
    • Table 1. Experimental results of different network layers

      View table
      View in Article

      Table 1. Experimental results of different network layers

      MethodMiddle/high cloudsStratusSea fogSea surfaceAverage
      POD/(%)89.3076.7182.1292.1585.07
      Three-groupsFAR/(%)11.0720.3721.137.4215.00
      CSI/(%)80.3664.1367.3185.8174.40
      POD/(%)89.0980.8786.4792.8487.32
      Four- groupsFAR/(%)7.0618.6419.147.9013.19
      CSI/(%)83.4468.2371.7885.9977.36
      POD/(%)90.4078.5982.0090.6585.41
      Five- groupsFAR/(%)11.0719.8219.247.5414.42
      CSI/(%)81.2565.8168.6084.4175.02
      POD/(%)91.9977.6080.2491.3485.29
      Six- groupsFAR/(%)11.6720.4317.837.0514.24
      CSI/(%)82.0264.7168.3485.4275.12
    • Table 2. Comparison of results of different convolution networks

      View table
      View in Article

      Table 2. Comparison of results of different convolution networks

      MethodMiddle/high cloudsStratusSea fogSea surfaceAverage
      POD/(%)87.3676.1181.7688.4583.42
      CNN_1DFAR/(%)11.6025.0723.794.8416.33
      CSI/(%)78.3860.6665.1484.6472.20
      POD/(%)89.0980.8786.4792.8487.32
      CNN_2DFAR/(%)7.0618.6419.147.9013.19
      CSI/(%)83.4468.2371.7885.9977.36
    • Table 3. Comparison of ablation results

      View table
      View in Article

      Table 3. Comparison of ablation results

      MethodMiddle/high cloudsStratusSea fogSea surfaceAverage
      POD/(%)90.4067.5973.6593.3081.24
      ATFFAR/(%)11.5524.7221.5518.3019.03
      CSI/(%)80.8555.3161.2577.1768.65
      POD/(%)89.4481.9680.4789.4985.34
      ATLFAR/(%)8.8020.4021.927.5214.66
      CSI/(%)82.3467.7365.6483.4274.78
      POD/(%)89.0980.8786.4792.8487.32
      WOAFAR/(%)7.0618.6419.147.9013.19
      CSI/(%)83.4468.2371.7885.9977.36
    • Table 4. Confusion matrix of model

      View table
      View in Article

      Table 4. Confusion matrix of model

      True labelMiddle/high cloudsStratusSea fogSea surface
      Middle/high clouds1290855815
      Stratus568169839
      Sea fog366473515
      Sea surface63818804
    • Table 5. Classification accuracy of different sea fog recognition methods

      View table
      View in Article

      Table 5. Classification accuracy of different sea fog recognition methods

      MethodMiddle/high cloudsStratusSea fogSea surfaceAverage
      POD/(%)85.2881.7158.7891.7879.39
      SVMFAR/(%)19.1221.5631.029.0520.19
      CSI/(%)70.9766.7246.4984.1067.07
      POD/(%)81.4264.2262.7182.1072.61
      DTFAR/(%)19.4135.0136.8518.1827.36
      CSI/(%)68.0747.7245.9169.4357.78
      POD/(%)89.9981.1785.4193.7687.58
      ResNetFAR/(%)8.3717.9418.246.1312.67
      CSI/(%)83.1568.9471.7488.3678.05
      POD/(%)89.0980.8786.4792.8487.32
      OursFAR/(%)7.0618.6419.147.9013.19
      CSI/(%)83.4468.2371.7885.9977.36
    Tools

    Get Citation

    Copy Citation Text

    Tao Li, Wei Jin, Randi Fu, Gang Li, Caoqian Yin. Nighttime sea fog recognition based on remote sensing satellite and deep neural decision tree[J]. Opto-Electronic Engineering, 2022, 49(9): 220007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Mar. 1, 2022

    Accepted: --

    Published Online: Oct. 13, 2022

    The Author Email: Jin Wei (xyjw1969@126.com)

    DOI:10.12086/oee.2022.220007

    Topics