Laser & Optoelectronics Progress, Volume. 58, Issue 6, 600003(2021)

Theoretical Models of Light Distribution in Biological Tissues Irradiated by Laser

Lü Chenyang and Zhan Renjun*
Author Affiliations
  • College of Equipment Management and Support, Engineering University of People’s Armed Police, Xi''an, Shaanxi 710086, China
  • show less
    References(152)

    [4] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 1, 0008(2017).

    [9] Zhang F X, Han Z X, Hao W et al. Research on thermal damage effect of a new laser weapon on human skin. [C]∥2nd International Conference on Artificial Intelligence and Engineering Applications, September 23, 2017. Wuhan: Wuhan Zhicheng Times Culture Development Co. Ltd.(2017).

    [10] Jasiński M. Modelling of thermal damage in laser irradiated tissue[J]. Journal of Applied Mathematics and Computational Mechanics, 14, 67-78(2015).

    [14] Li X X. Numerical analysis and experimental research on laser induced thermal effect in bio-tissues[D]. Tianjin: Tianjin University(2004).

    [15] Wang Y F. Light and temperature distribution by laser ablation under 1064 nm[D]. Shanghai: Shanghai Jiao Tong University(2013).

    [16] Zhang J Z. Photo-thermal interactions of laser ablation and selective photothermolysis during laser treatments of skin diseases[D]. Beijing: Tsinghua University(2009).

    [17] Dong X X. Research on the method and technology of dual-wavelength laser pain stimulation[D]. Beijing: Peking Union Medical College(2014).

    [18] Wang H. Study on the temperature distribution in skin tissue induced by laser based on thermal pain stimulation[D]. Beijing: Peking Union Medical College(2017).

    [20] Bonner R F, Nossal R, Havlin S et al. Model for photon migration in turbid biological media[J]. Journal of the Optical Society of America A, 4, 423-432(1987).

    [21] Luo Q, Gong H, Liu X. Simulation and inspection of laser transport in biological tissue[J]. Applied Optics, 24, 125-129(1995).

    [24] Sun X Q, Li X S, Ma L. A closed-form method for calculating the angular distribution of multiply scattered photons through isotropic turbid slabs[J]. Optics Express, 19, 23932-23937(2011).

    [25] Welch A J. Optical-thermal response of laser-irradiated tissue[M]. Dordrecht: Springer Netherlands(2011).

    [26] Prahl S A, Welch A J. Determining the optical properties of turbid media by using the adding-doubling method[J]. Applied Optics, 32, 559-568(1993).

    [27] Xu K X, Gao F, Zhao H J[M]. Biomedical photonics(2011).

    [28] Metropolis N, Ulam S. The Monte Carlo method[J]. Journal of the American Statistical Association, 44, 335-341(1949).

    [29] Graaff R. Koelink M H, de Mul F F M, et al. Condensed Monte Carlo simulations for the description of light transport[J]. Applied Optics, 32, 426-434(1993).

    [30] Groenhuis R A J, Ferwerda H A, Ten Bosch J J. Scattering and absorption of turbid materials determined from reflection measurements. 1: theory[J]. Applied Optics, 22, 2456-2462(1983).

    [31] Meier R R, Lee L S, Anderson D E. Atmospheric scattering of middle UV radiation from an internal source[J]. Applied Optics, 17, 3216-3225(1978).

    [32] Qu J Y. MacAulay C E, Lam S, et al. Laser-induced fluorescence spectroscopy at endoscopy: tissue optics, Monte Carlo modeling, and in vivo measurements[J]. Optical Engineering, 34, 3334-3344(1995).

    [33] Tuchin V V[M]. Handbook of optical biomedical diagnostics(2002).

    [34] Jacques S L, Wang L H. Monte Carlo modeling of light transport in tissuesoptical-thermal response of laser-irradiated tissue[M]. New York: Springer, 73-100(1995).

    [35] Wang L, Jacques S L. Monte Carlo modeling of light transport in multi-layered tissues in standard C[M]. Houston: University of Texas, 4-11(1992).

    [38] Meglinsky I V, Matcher S J. Modelling the sampling volume for skin blood oxygenation measurements[J]. Medical and Biological Engineering and Computing, 39, 44-50(2001).

    [40] Lin Y, Northrop W F, Li X. Markov chain solution of photon multiple scattering through turbid slabs[J]. Optics Express, 24, 26942-26947(2016).

    [43] Cook P D, Bixler J N, Thomas R J et al. Prediction of tissue optical properties using Monte Carlo modeling of photon transport in turbid media and integrating spheres (Conference Presentation)[J]. Proceedings of SPIE, 11238, 112380P(2020).

    [46] Terziev V. Modeling of temperature distribution in biotissues[J]. International E-Journal of Advances in Social Sciences, 5, 731-737(2019).

    [47] Chen B, Zhang Y, Li D. Numerical investigation of the thermal response to skin tissue during laser lipolysis[J]. Journal of Thermal Science, 27, 470-478(2018).

    [48] Burhan M T, Tozburun S. Monte-Carlo based simulations of photothermal response of nerve tissue for laser wavelengths of 1455 nm, 1490 nm, 1550 nm[J]. Proceedings of SPIE, 11238, 1123814(2020).

    [51] Ash C, Dubec M, Donne K et al. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods[J]. Lasers in Medical Science, 32, 1909-1918(2017).

    [52] Hamdy O, Youssef D, El-Azab J et al. Detection of breast diseases using numerical study of light propagation[C]. ∥2018 9th Cairo International Biomedical Engineering Conference (CIBEC), December 20-22, 2018, Cairo, Egypt., 53-56(2018).

    [53] Tuchin V V. Tissue optics[C]. ∥Society of Photo-Optical Instrumentation Engineers,(2015).

    [54] Yaroslavsky I V, Yaroslavsky A N, Goldbach T et al. Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements[J]. Applied Optics, 35, 6797-6809(1996).

    [55] Kienle A, Patterson M S. Determination of the optical properties of turbid media from a single Monte Carlo simulation[J]. Physics in Medicine and Biology, 41, 2221-2227(1996).

    [56] Pifferi A, Taroni P, Valentini G et al. Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model[J]. Applied Optics, 37, 2774-2780(1998).

    [60] Liu Q, Ramanujam N. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media[J]. Journal of Biomedical Optics, 17, 010501(2007).

    [62] Sabzevari I, Sharma S. Improved speed and scaling in orbital space variational Monte Carlo[J]. Journal of Chemical Theory and Computation, 14, 6276-6286(2018).

    [63] Rearden B T. (2016-04-01)[2020-07-14]. https:∥www.osti.gov/biblio/1424483..

    [64] Sassaroli A, Blumetti C, Martelli F et al. Monte Carlo procedure for investigating light propagation and imaging of highly scattering media[J]. Applied Optics, 37, 7392-7400(1998).

    [69] Sassaroli A. Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media[J]. Optics Letters, 36, 2095-2097(2011).

    [70] Song Y M, Li J W, Cai F H. Fast perturbation Monte Carlo simulation for heterogeneous medium and its utilization in functional near-infrared spectroscopy[J]. Journal of Physics: Conference Series, 680, 012019(2016).

    [71] Perfetti C M, Rearden B T. Development of a generalized perturbation theory method for sensitivity analysis using continuous-energy Monte Carlo methods[J]. Nuclear Science and Engineering, 182, 354-368(2016).

    [74] Duane S, Kennedy A D, Pendleton B J et al. Hybrid Monte Carlo[J]. Physics Letters B, 195, 216-222(1987).

    [76] Wang L, Jacques S L. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media[J]. Journal of the Optical Society of America A, 10, 1746-1752(1993).

    [77] Luo B, He S L. An improved Monte Carlo diffusion hybrid model for light reflectance by turbid media[J]. Optics Express, 15, 5905-5918(2007).

    [80] Tinet E, Avrillier S, Tualle J M. Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media[J]. Journal of the Optical Society of America A, 13, 1903-1915(1996).

    [81] Chatigny S, Morin M, Asselin D et al. Hybrid Monte Carlo for photon transport through optically thick scattering media[J]. Applied Optics, 38, 6075-6086(1999).

    [82] Alexandrakis G, Farrell T J, Patterson M S. Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain[J]. Applied Optics, 39, 2235-2244(2000).

    [87] Wang L H, Jacques S L, Zheng L Q. MCML: Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods and Programs in Biomedicine, 47, 131-146(1995).

    [89] Chen N G. Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry[J]. Applied Optics, 46, 1597-1603(2007).

    [91] Lima I T, Kalra A, Sherif S S. Improved importance sampling for Monte Carlo simulation of time-domain optical coherence tomography[J]. Biomedical Optics Express, 2, 1069-1081(2011).

    [92] Lima I T, Kalra A. Hernández-Figueroa H E, et al. Fast calculation of multipath diffusive reflectance in optical coherence tomography[J]. Biomedical Optics Express, 3, 692-700(2012).

    [93] Dubey A, Reddi S J, Póczos B et al. Variance reduction in stochastic gradient Langevin dynamics[J]. Advances in Neural Information Processing Systems, 29, 1154-1162(2016).

    [94] Chatterji N S, Flammarion N, Ma Y A et al. (2018-02-01)[2020-07-14]. http:∥www.publish.ac.cn/ArticleSubmit/Index/d9cd0022-ff1b-4ba3-8e8f-2f13a2e1ca2a/%E7%A8%BF%E4%BB%B6%E5%BE%85%E5%A4%84%E7%90%86..

    [96] Hayashi T, Kashio Y, Okada E. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region[J]. Applied Optics, 42, 2888-2896(2003).

    [97] Hardy L A, Chang C H, Myers E M et al. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations[J]. Proceedings of SPIE, 9689, 96891R(2016).

    [104] van der Zee P. Methods for measuring the optical properties of tissue samples in the visible and near infrared wavelength range[J]. Proceedings of SPIE, 10311, 103110B(1993).

    [107] Grossweiner L I, Karagiannes J L, Johnson P W et al. Gaussian beam spread in biological tissues[J]. Applied Optics, 29, 379-383(1990).

    [108] Grossweiner L I. Al-Karmi A M, Johnson P W, et al. Modeling of tissue heating with a pulsed Nd∶ YAG laser[J]. Lasers in Surgery and Medicine, 10, 295-302(1990).

    [109] Loze M K, Wright C D. Temperature distributions in semi-infinite and finite-thickness media as a result of absorption of laser light[J]. Applied Optics, 36, 494-507(1997).

    [113] Li X X, Fan S F, Zhao Y Q. Research on photo-thermal effect of in vivo skin irradiated by CO2 laser[J]. Journal of Optoelectronics· Laser, 16, 1257-1260(2005).

    [114] Wang J H, Ding Y, Chen S L et al. Transport for photon beams of finite size in biological tissues based on Monte Carlo[J]. Acta Photonica Sinica, 43, 167-171(2014).

    [117] Ishimaru A. Isotropic scattering[M]. ∥Wave Propagation and Scattering in Random Media. Amsterdam: Elsevier, 220-233(1978).

    [118] Boas D A. O'Leary M A, Chance B, et al. Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications[J]. Proceedings of the National Academy of Sciences, 91, 4887-4891(1994).

    [119] Patterson M S, Chance B, Wilson B C. Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties[J]. Applied Optics, 28, 2331-2336(1989).

    [121] McLean J W, Freeman J D, Walker R E. Beam spread function with time dispersion[J]. Applied Optics, 37, 4701-4711(1998).

    [123] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2, 183-202(2009).

    [124] Yona G, Meitav N, Kahn I et al. 3(1): ENEURO. 0059-, 15, 2015(2016).

    [125] Contini D, Martelli F, Zaccanti G. Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory[J]. Applied Optics, 36, 4587-4599(1997).

    [127] Yaroslavsky A N, Schulze P C, Yaroslavsky I V et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range[J]. Physics in Medicine and Biology, 47, 2059-2073(2002).

    [131] Sun P, Yang R Q, Xie F H et al. A method for determining optical properties of human tissues by measuring diffuse reflectance with CCD[J]. Proceedings of SPIE, 7845, 784522(2010).

    [133] Cong A X, Shen H, Cong W et al. Improving the accuracy of the diffusion model in highly absorbing media[J]. International Journal of Biomedical Imaging, 2007, 38168(2007).

    [136] Karagiannes J L, Zhang Z Y, Grossweiner B et al. Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms[J]. Applied Optics, 28, 2311-2317(1989).

    [139] Jasiński M. Numerical analysis of soft tissue damage process caused by laser action[J]. AIP Conference Proceedings, 1922, 060002(2018).

    [141] Majchrzak E, Jasiński M, Turchan Ł. Modeling of laser-soft tissue interactions using the dual-phase lag equation: sensitivity analysis with respect to selected tissue parameters[J]. Defect and Diffusion Forum, 379, 108-123(2017).

    [144] Lister T, Wright P, Chappell P. Optical properties of human skin[J]. Journal of Biomedical Optics, 17, 090901(2012).

    [145] Jacques S L. Optical properties of biological tissues: a review[J]. Physics in Medicine and Biology, 58, R37-R61(2013).

    [147] Chen R, Huang B H, Wang Y Y et al. The optical model of human skin[J]. Acta Laser Biology Sinica, 14, 520-526(2005).

    [149] Guan K W, Jiang Y Q, Sun C S et al. A two-layer model of laser interaction with skin: a photothermal effect analysis[J]. Optics & Laser Technology, 43, 425-429(2011).

    [152] Wang W M, Gibbon P, Sheng Z M et al. Integrated simulation approach for laser-driven fast ignition[J]. Physical Review E, 91, 013101(2015).

    Tools

    Get Citation

    Copy Citation Text

    Lü Chenyang, Zhan Renjun. Theoretical Models of Light Distribution in Biological Tissues Irradiated by Laser[J]. Laser & Optoelectronics Progress, 2021, 58(6): 600003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jul. 14, 2020

    Accepted: --

    Published Online: Mar. 2, 2021

    The Author Email: Renjun Zhan (zhanrenjun@aliyun.com)

    DOI:10.3788/LOP202158.0600003

    Topics