Optical Instruments, Volume. 44, Issue 5, 20(2022)
Research on the effect of repetition frequency difference for terahertz dual-comb spectroscopy
[1] UDEM T, HOLZWARTH R, HäNSCH T W. Optical frequency metrology[J]. Nature, 416, 233-237(2002).
[3] ADLER F, MASłOWSKI P, FOLTYNOWICZ A, et al. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb[J]. Optics express, 18, 21861-21872(2010).
[4] GOHLE C, STEIN B, SCHLIESSER A, et al. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra[J]. Physical review letters, 99, 263902(2007).
[5] CODDINGTON I, NEWBURY N, SWANN W. Dual-comb spectroscopy[J]. Optica, 3, 414-426(2016).
[6] SCHLIESSER A, BREHM M, KEILMANN F, et al. Frequency-comb infrared spectrometer for rapid, remote chemical sensing[J]. Optics express, 13, 9029-9038(2005).
[7] BERNHARDT B, OZAWA A, JACQUET P, et al. Cavity-enhanced dual-comb spectroscopy[J]. Nature photonics, 4, 55-57(2010).
[8] IDEGUCHI T, POISSON A, GUELACHVILI G, et al. Adaptive dual-comb spectroscopy in the green region[J]. Optics letters, 37, 4847-4849(2012).
[9] CODDINGTON I, SWANN W C, NEWBURY N R. Time-domain spectroscopy of molecular free-induction decay in the infrared[J]. Optics letters, 35, 1395-1397(2010).
[10] YASUI T, NOSE M, IHARA A, et al. Fiber-based, hybrid terahertz spectrometer using dual fiber combs[J]. Optics letters, 35, 1689-1691(2010).
[12] PENG Y, SHI C, WU X, et al. Terahertz imaging and spectroscopy in cancer diagnostics: a technical review[J]. BME Frontiers, 2020(2020).
[13] PENG Y, SHI C, ZHU Y, et al. Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement[J]. PhotoniX, 1, 1-18(2020).
[14] SCHILLER S. Spectrometry with frequency combs[J]. Optics letters, 27, 766-768(2002).
[15] KEILMANN F, GOHLE C, HOLZWARTH R. Time-domain mid-infrared frequency-comb spectrometer[J]. Optics letters, 29, 1542-1544(2004).
[16] JANKE C, FÖRST M, NAGEL M, et al. Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors[J]. Optics letters, 30, 1405-1407(2005).
[17] BARTELS A, CERNA R, KISTNER C, et al. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling[J]. Review of Scientific Instruments, 78, 035107(2007).
[18] KLATT G, GEBS R, SCHÄFER H, et al. High-resolution terahertz spectrometer[J]. IEEE journal of selected topics in quantum electronics, 17, 159-168(2010).
[19] TAKAGI S, TAKAHASHI S, TAKEYA K, et al. Influence of delay stage positioning error on signal-to-noise ratio, dynamic range, and bandwidth of terahertz time-domain spectroscopy[J]. Applied Optics, 59, 841-845(2020).
[20] YASUI T, KABETANI Y, SANEYOSHI E, et al. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy[J]. Applied Physics Letters, 88, 241104(2006).
[21] YASUI T, SANEYOSHI E, ARAKI T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition[J]. Applied Physics Letters, 87, 061101(2005).
[22] HSIEH Y D, IYONAGA Y, SAKAGUCHI Y, et al. Terahertz comb spectroscopy traceable to microwave frequency standard[J]. IEEE Transactions on Terahertz Science and Technology, 3, 322-330(2013).
[23] HU G, MIZUGUCHI T, OE R, et al. Dual terahertz comb spectroscopy with a single free-running fibre laser[J]. Scientific Reports, 8, 1-9(2018).
[24] CHEN J, NITTA K, ZHAO X, et al. Adaptive-sampling near-Doppler-limited terahertz dual-comb spectroscopy with a free-running single-cavity fiber laser[J]. Advanced Photonics, 2, 036004(2020).
[25] ZHU Z, NI K, ZHOU Q, et al. Digital correction method for realizing a phase-stable dual-comb interferometer[J]. Optics Express, 26, 16813-16823(2018).
[26] IDEGUCHI T, POISSON A, GUELACHVILI G, et al. Adaptive real-time dual-comb spectroscopy[J]. Nature communications, 5, 1-8(2014).
[27] ZHANG W, CHEN X, WU X, et al. Adaptive cavity-enhanced dual-comb spectroscopy[J]. Photonics Research, 7, 883-889(2019).
[28] YASUI T, ICHIKAWA R, HSIEH Y D, et al. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers[J]. Scientific reports, 5, 1-10(2015).
[29] PICQUÉ N, HÄNSCH T W. Frequency comb spectroscopy[J]. Nature Photonics, 13, 146-157(2019).
[30] GIACCARI P, DESCHÊNES J D, SAUCIER P, et al. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method[J]. Optics express, 16, 4347-4365(2008).
[31] GUO X G, JIANG X L, ZHU Y M, et al. Unified description on principles of fourier transform infrared spectroscopy and terahertz time-domain spectroscopy[J]. Infrared Physics & Technology, 101, 105-109(2019).
[32] FU H, JIANG X, WU J, et al. Terahertz dual-comb spectroscopy: A comparison between time-and frequency-domain operation modes[J]. Infrared Physics & Technology, 115, 103699(2021).
[33] CUI H, ZHANG X B, SU J F, et al. Vibration–rotation absorption spectrum of water vapor molecular in frequency selector at 0.5–2.5 THz range[J]. Optik, 126, 3533-3537(2015).
Get Citation
Copy Citation Text
Jingrui WU, Xuguang GUO. Research on the effect of repetition frequency difference for terahertz dual-comb spectroscopy[J]. Optical Instruments, 2022, 44(5): 20
Category: TESTING TECHNOLOGY
Received: Feb. 28, 2022
Accepted: Mar. 22, 2022
Published Online: Nov. 14, 2022
The Author Email: GUO Xuguang (xgguo_sh@qq.com)