Semiconductor Optoelectronics, Volume. 43, Issue 4, 714(2022)

Optical Fiber Sensing Technology in Lithium-Ion Battery Parameter Monitoring

WANG Longning*, PENG Jun, and JIA Shuhai
Author Affiliations
  • [in Chinese]
  • show less
    References(52)

    [1] [1] Zhou D, Shanmikaraj D, Tkacheva A, et al. Polymer electrolytes for lithium-based batteries: Advances and prospects[J]. Chem., 2019, 5(9): 2326-2352.

    [2] [2] Zubi G, Dufo-Lopez R, Carvalho M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable & Sustainable Energy Reviews, 2018, 89: 292-308.

    [3] [3] Gur T M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage[J]. Energy & Environmental Science, 2018, 11(10): 2696-2767.

    [4] [4] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29.

    [5] [5] Wu W X, Wang S F, Wu W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281.

    [6] [6] Wei J W, Dong G Z, Chen Z H, et al. System state estimation and optimal energy control framework for multicell lithium-ion battery system[J]. Appl. Energy, 2017, 187: 37-49.

    [7] [7] Lawder M T, Suthar B, Northrop P W C, et al. Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications[J]. Proc. of the IEEE, 2014, 102(6): 1014-1030.

    [8] [8] Rahimi-Eichi H, Ojha U, Baronti F, et al. Battery management system an overview of its application in the smart grid and electric vehicles[J]. IEEE Industrial Electronics Magazine, 2013, 7(2): 4-16.

    [9] [9] Hu X, Deng Z, Lin X, et al. Research directions for next-generation battery management solutions in automotive applications[J]. Renewable & Sustainable Energy Reviews, 2021, 152: 111695.

    [10] [10] Edstrom K, Ayerbe E, Castelli I E, et al. Editorial to the special issue: How to reinvent the ways to invent the batteries of the future-the battery 2030+large-scale research initiative roadmap[J]. Adv. Energy Materials, 2022, 12(17): 2200644.

    [11] [11] Fichtner M, Edstrom K, Ayerbe E, et al. Rechargeable batteries of the future-The state of the art from a BATTERY 2030+perspective[J]. Adv. Energy Materials, 2021: 10.1002/aenm.202102904.

    [12] [12] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. J. of Lightwave Technol., 1997, 15(8): 1263-1276.

    [13] [13] Ma Z, Chen X Y. Fiber Bragg gratings sensors for aircraft wing shape measurement: Recent applications and technical analysis[J]. Sensors, 2019, 19(1): 55.

    [14] [14] Janxzuk-Richter M, Dominik M, Razniecka E, et al. Long-period fiber grating sensor for detection of viruses[J]. Sensors and Actuators B: Chemical, 2017, 250: 32-38.

    [15] [15] Patrick H J, Williams G M, Kersey A D, et al. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination[J]. IEEE Photon. Technol. Lett., 1996, 8(9): 1223-1225.

    [16] [16] Ouellette F. Dispersion cancellation using linearly chirped Bragg grating filters in optical wave-guides[J]. Opt. Lett., 1987, 12(10): 847-849.

    [17] [17] Tosi D. Review of chirped fiber Bragg grating (CFBG) fiber-optic sensors and their applications[J]. Sensors, 2018, 18(7): 2147.

    [18] [18] Albert J, Shao L Y, Caucheteur C. Tilted fiber Bragg grating sensors[J]. Laser & Photon. Reviews, 2013, 7(1): 83-108.

    [19] [19] Lao J J, Sun P, Liu F, et al. In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage[J]. Light-Science & Applications, 2018, 7(1): 11.

    [20] [20] Sun X Y, Zeng L, Du H F, et al. Phase-shifted gratings fabricated with femtosecond laser by overlapped two types of fiber Bragg gratings[J]. Opt. and Laser Technol., 2020, 124.

    [21] [21] Wei L, Lit J W Y. Phase-shifted Bragg grating filters with symmetrical structures[J]. J. of Lightwave Technol., 1997, 15(8): 1405-1410.

    [22] [22] Erdogan T. Fiber grating spectra[J]. J. of Lightwave Technol., 1997, 15(8): 1277-1294.

    [26] [26] Hedman J, Nilebo D, Langhammer E L, et al. Fibre optic sensor for characterisation of lithium-ion batteries[J]. Chemsuschem, 2020, 13(21): 5731-5739.

    [30] [30] Tong L M, Lou J Y, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]. Opt. Express, 2004, 12(6): 1025-1035.

    [31] [31] Hedman J, Nilebo D, Larsson Langhammer E, et al. Fibre optic sensor for characterisation of lithium-ion batteries[J]. Chemsuschem, 2020, 13(21): 5731-5739.

    [37] [37] Yang G, C Leitao, Li Y H, et al. Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage[J]. Measurement, 2013, 46(9): 3166-3172.

    [38] [38] Novais S, Nascimento M, Grande L, et al. Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors[J]. Sensors, 2016, 16(9): 1394.

    [39] [39] Nascimento M, Novais S, C Leitao, et al. Lithium batteries temperature and strain fiber monitoring[C]// Proc. of the 24th Inter. Conf. on Optical Fibre Sensors (OFS), 2015.

    [40] [40] Nascimento M, Paixao T, Ferreira M S, et al. Thermal mapping of a lithium polymer batteries pack with FBGs network[J]. Batteries-Basel, 2018, 4(4): 67.

    [41] [41] Nascimento M, Ferreira M S, Pinto J L. Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: A comparative study[J]. Measurement, 2017, 111: 260-263.

    [42] [42] Nascimento M, Ferreira M S, Pinto J L. Simultaneous sensing of temperature and bi-directional strain in a prismatic Li-ion battery[J]. Batteries-Basel, 2018, 4(2).

    [43] [43] Nascimento M, Ferreira M S, Pinto J L. Temperature fiber sensing of Li-ion batteries under different environmental and operating conditions[J]. Appl. Thermal Engineering, 2019, 149: 1236-1243.

    [44] [44] Nascimento M, Novais S, Ding M S, et al. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries[J]. J. of Power Sources, 2019, 410: 1-9.

    [45] [45] Amietszajew T, Mcturk E, Fleming J, et al. Understanding the limits of rapid charging using instrumented commercial 18650 high-energy Li-ion cells[J]. Electrochimica Acta, 2018, 263: 346-352.

    [46] [46] Kim S, Wee J, Peters K, et al. Multiphysics coupling in lithium-ion batteries with reconstructed porous microstructures[J]. J. of Physical Chemistry C, 2018, 122(10): 5280-5290.

    [47] [47] Liu Y, Fang J, Xu C, et al. Feasibility of gold-plated fiber Bragg grating sensors used in lithium ion battery in-situ detection[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040602-1-040602-7.

    [48] [48] Zhou W, Ye Q, Ye L, et al. Distributed optical fiber in-situ monitoring technology for a healthy temperature field in lithium ion batteries[J]. Chinese J. of Lasers, 2020, 47(12): 1204002.

    [49] [49] Mukhopadhyay A, Sheldon B W. Deformation and stress in electrode materials for Li-ion batteries[J]. Progress in Materials Science, 2014, 63: 58-116.

    [50] [50] Sethuraman V A, Hardwick L J, Srinivasan V, et al. Surface structural disordering in graphite upon lithium intercalation/deintercalation[J]. J. of Power Sources, 2010, 195(11): 3655-3660.

    [51] [51] Sommer L W, Raghavan A, Kiesel P, et al. Embedded fiber optic sensing for accurate state estimation in advanced battery management systems[J]. MRS Online Proceedings Library, 2014, 1681(1): 1-7.

    [52] [52] Sommer L W, Raghavan A, Kiesel P, et al. Monitoring of intercalation stages in lithium-ion cells over charge-discharge cycles with fiber optic sensors[J]. J. of the Electrochemical Society, 2015, 162(14): A2664-A2669.

    [53] [53] Sommer L W, Kiesel P, Ganguli A, et al. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors[J]. J. of Power Sources, 2015, 296: 46-52.

    [54] [54] Bae C J, Manandhar A, Kiesel P, et al. Monitoring the strain evolution of lithium-ion battery electrodes using an optical fiber Bragg grating sensor[J]. Energy Technology, 2016, 4(7): 851-855.

    [55] [55] Ganguli A, Saha B, Raghavan A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation[J]. J. of Power Sources, 2017, 341: 474-482.

    [56] [56] Raghavan A, Kiesel P, Sommer L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance[J]. J. of Power Sources, 2017, 341: 466-473.

    [57] [57] Fortier A, Tsao M, Williard N D, et al. Preliminary study on integration of fiber optic Bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells[J]. Energies, 2017, 10(7): 838.

    [58] [58] Huang J Q, Blanquer L A, Bonefacino J, et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors[J]. Nature Energy, 2020, 5(9): 674-683.

    [59] [59] Schmitt J, Kraft B, Schmidt J P, et al. Measurement of gas pressure inside large-format prismatic lithium-ion cells during operation and cycle aging[J]. J. of Power Sources, 2020, 478(14): 228661.

    [60] [60] Zhang Y J, Wang H W, Wang Y, et al. Thermal abusive experimental research on the large-format lithium-ion battery using a buried dual-sensor[J]. J. of Energy Storage, 2021, 33(4): 102156.

    [61] [61] Ghannoum A, Norris R C, Iyer K, et al. Optical characterization of commercial lithiated graphite battery electrodes and in situ fiber optic evanescent wave spectroscopy[J]. ACS Appl. Materials & Interfaces, 2016, 8(29): 18763-18769.

    [62] [62] Ghannoum A, Nieva P, Yu A P, et al. Development of embedded fiber-optic evanescent wave sensors for optical characterization of graphite anodes in lithium-ion batteries[J]. ACS Appl. Materials & Interfaces, 2017, 9(47): 41284-41290.

    [63] [63] Hedman J, Bjorefors F. Fiber optic monitoring of composite lithium iron phosphate cathodes in pouch cell batteries[J]. ACS Appl. Energy Materials, 2022, 5(1): 870-881.

    Tools

    Get Citation

    Copy Citation Text

    WANG Longning, PENG Jun, JIA Shuhai. Optical Fiber Sensing Technology in Lithium-Ion Battery Parameter Monitoring[J]. Semiconductor Optoelectronics, 2022, 43(4): 714

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jul. 28, 2022

    Accepted: --

    Published Online: Oct. 16, 2022

    The Author Email: Longning WANG (871915527@qq.com)

    DOI:10.16818/j.issn1001-5868.2022072801

    Topics