Optics and Precision Engineering, Volume. 32, Issue 7, 1045(2024)
Fuzzy C-means clustering algorithm based on adaptive neighbors information
[1] MACQUEEN J. Some methods for classification and analysis of multivariate observations[J]. Proc. Symp. Math. Statist. and Probability, 1(1967).
[2] DUNN J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 3, 32-57(1973).
[3] BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 10, 191-203(1984).
[4] PAL N R, BEZDEK J C. On cluster validity for the fuzzy c-means model[J]. IEEE Transactions on Fuzzy Systems, 3, 370-379(1995).
[5] NG A Y, JORDAN M I, WEISS Y. On Spectral Clustering: Analysis and an algorithm[J]. proc nips(2002).
[6] YU J, YANG M S. Optimality test for generalized FCM and its application to parameter selection[J]. IEEE Transactions on Fuzzy Systems, 13, 164-176(2005).
[7] YU J, YANG M S. A generalized fuzzy clustering regularization model with optimality tests and model complexity analysis[J]. IEEE Transactions on Fuzzy Systems, 15, 904-915(2007).
[8] XU J L, HAN J W, XIONG K et al. Robust and sparse fuzzy K-means clustering[C], 2224-2230(2016).
[9] CHANG X Y, WANG Q N, LIU Y W et al. Sparse regularization in fuzzy c-means for high-dimensional data clustering[J]. IEEE Transactions on Cybernetics, 47, 2616-2627(2017).
[10] ZHANG R, NIE F P, GUO M H et al. Joint learning of fuzzy
[11] Zhang R, Tong H, Xia Y et al. Robust Embedded Deep K-means Clustering[C](2019).
[12] CHUANG K S, TZENG H L, CHEN S et al. Fuzzy c-means clustering with spatial information for image segmentation[J]. Computerized Medical Imaging and Graphics, 30, 9-15(2006).
[13] CAI W L, CHEN S C, ZHANG D Q. Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation[J]. Pattern Recognition, 40, 825-838(2007).
[14] NIE F P, WANG X Q, HUANG H. Clustering and projected clustering with adaptive neighbors[C](2014).
[15] ZHOU D Y, BOUSQUET O, LAL T N et al. Learning with local and global consistency[C]. British Columbia, 321-328(2003).
[16] HOU C P, NIE F P, JIAO Y Y et al. Learning a subspace for clustering via pattern shrinking[J]. Information Processing and Management: an International Journal, 49, 871-883(2013).
[17] CHANG X J, NIE F P, MA Z G et al. A convex formulation for spectral shrunk clustering[J]. ArXiv e-Prints(2014).
[18] ZHAO X W, NIE F P, WANG R et al. Robust fuzzy K-means clustering with shrunk patterns learning[J]. IEEE Transactions on Knowledge and Data Engineering, 1(2021).
[19] WU K L, YU J, YANG M S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests[J]. Pattern Recognition Letters, 26, 639-652(2005).
[20] LI M J, NG M K, CHEUNG Y M et al. Agglomerative fuzzy K-means clustering algorithm with selection of number of clusters[J]. IEEE Transactions on Knowledge and Data Engineering, 20, 1519-1534(2008).
Get Citation
Copy Citation Text
Yunlong GAO, Jianpeng LI, Xingshen ZHENG, Guifang SHAO, Qingyuan ZHU, Chao CAO. Fuzzy C-means clustering algorithm based on adaptive neighbors information[J]. Optics and Precision Engineering, 2024, 32(7): 1045
Category:
Received: Aug. 28, 2023
Accepted: --
Published Online: May. 28, 2024
The Author Email: Chao CAO (caochao@tio.org.cn)