Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2915(2024)
Preparation of Ultrafine-Grained (Ce0.2Nd0.2Sm0.2Gd0.2Y0.2)2Zr2O7 High-Entropy Ceramics via Pressureless Two-Step Sintering
[1] [1] ROST C M, RAK Z, BRENNER D W, et al. Local structure of the MgxNixCoxCuxZnxO (x=0.2) entropy-stabilized oxide: An EXAFS study[J]. J Am Ceram Soc, 2017, 100(6): 2732–2738.
[2] [2] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat Rev Mater, 2020, 5: 295–309.
[3] [3] AAMLID S S, OUDAH M, ROTTLER J, et al. Understanding the role of entropy in high entropy oxides[J]. J Am Chem Soc, 2023, 145(11):5991–6006.
[4] [4] SARKAR A, VELASCO L, WANG D, et al. High entropy oxides for reversible energy storage[J]. Nat Commun, 2018, 9(1): 3400.
[5] [5] AKRAMI S, EDALATI P, FUJI M, et al. High-entropy ceramics:Review of principles, production and applications[J]. Mater Sci Eng R Rep, 2021, 146: 100644.
[6] [6] LI L L, JI P C, GENG C, et al. Facile synthesis of high-entropy(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 nanopowders and their electrochemical properties as supercapacitor electrode[J]. J Energy Storage, 2023, 73:109182.
[7] [7] LI S, PENG Z J, FU X L. Zn0.5Co0.5Mn0.5Fe0.5Al0.5Mg0.5O4 high-entropy oxide with high capacity and ultra-long life for Li-ion battery anodes[J]. J Adv Ceram, 2023, 12(1): 59–71.
[8] [8] FRACCHIA M, CODURI M, GHIGNA P, et al. Phase stability of high entropy oxides: A critical review[J]. J Eur Ceram Soc, 2024, 44(2):585–594.
[9] [9] YANG W Z, ZHU Q Q, XIAO G R, et al. Metal deficient AlB2-type(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)1–δB2 high-entropy diborides with high hardness[J]. Ceram Int, 2023, 49(3): 5522–5526.
[10] [10] SMITH S M II, FAHRENHOLTZ W G, HILMAS G E. Pressureless sintering of high-entropy boride ceramics[J]. J Eur Ceram Soc, 2023,43(12): 5168–5173.
[11] [11] HAN L, CHEN Y, ZHANG H, et al. Low-temperature synthesis of six-principal-component high-entropy transition-metal carbide aerogel thermal insulator[J]. J Am Ceram Soc, 106(2): 841–847.
[12] [12] ZENG L Y, WANG Z Q, SONG J, et al. Discovery of the high-entropy carbide ceramic topological superconductor candidate(Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C[J]. Adv Funct Materials, 2023, 33(40):2301929.
[13] [13] HU J J, YANG Q K, ZHU S Y, et al. Superhard bulk high-entropy carbides with enhanced toughness via metastable in situ particles[J].Nat Commun, 2023, 14(1): 5717.
[14] [14] KUMAR N G, ANDREAS K, MAYRHOFER PAUL H, et al. On correlations between local chemistry, distortions and kinetics in high entropy nitrides: An ab initio study[J]. Acta Mater, 2023, 255: 118951.
[15] [15] YUAN M Y, GAO X X, GU X L, et al. Simultaneous enhancement of hardness and wear and corrosion resistance of high-entropy transition-metal nitride[J]. J Am Ceram Soc, 2023, 106(2): 1356–1368.
[16] [16] HEWAGE N W, VISWANATHAN G, YOX P, et al. Synthesis of chiral high-entropy sulfides for non-linear optical applications[J]. Inorg Chem Front, 2023, 10(22): 6613–6621.
[17] [17] LIN L, WANG K, SARKAR A, et al. High-entropy sulfides as electrode materials for Li-ion batteries[J]. Adv Energy Mater, 2022,12(8): 2103090.
[18] [18] SHARMA P, BALASUBRAMANIAN G. High configurational entropy driven increased heat capacity of refractory multicomponent di-silicides[J]. Materialia, 2023, 30: 101861.
[19] [19] LIU B, YANG W Z, XIAO G R, et al. High-entropy silicide superconductors with W5Si3-type structure[J]. Phys Rev Materials,2023, 7: 014805.
[20] [20] XU L, NIU M, WANG H J, et al. Response of structure and mechanical properties of high entropy pyrochlore to heavy ion irradiation[J]. J Eur Ceram Soc, 2022, 42(14): 6624–6632.
[21] [21] LIU D B, SHI B L, GENG L Y, et al. High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings[J]. J Adv Ceram, 2022, 11(6): 961–973.
[22] [22] WANG Z Z, ZHU C Z, WANG H, et al. Preparation and irradiation stability of A2B2O7 pyrochlore high-entropy ceramic for immobilization of high-level nuclear waste[J]. J Nucl Mater, 2023, 574:154212.
[23] [23] LUO X W, LUO L R, ZHAO X F, et al. Single-phase rare-earth high-entropy zirconates with superior thermal and mechanical properties[J]. J Eur Ceram Soc, 2022, 42(5): 2391–2399.
[24] [24] ZHOU L, LI F, LIU J X, et al. High-entropy A2B2O7-type oxide ceramics: A potential immobilising matrix for high-level radioactive waste[J]. J Hazard Mater, 2021, 415: 125596.
[25] [25] ZHAO G L, CAI S K, ZHANG Y, et al. Reactive flash sintering of high-entropy oxide (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7: Microstructural evolution and aqueous durability[J]. J Eur Ceram Soc, 2023, 43(6):2593–2600.
[26] [26] LIU D B, WANG Y G, ZHOU F F, et al. A novel high-entropy(Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Zr2O7 ceramic aerogel with ultralow thermal conductivity[J]. Ceram Int, 2021, 47(21): 29960–29968.
[27] [27] WANG Y H, JIN Y J, DING Z Y, et al. Microstructure and electrical properties of new high-entropy rare-earth zirconates[J]. J Alloys Compd, 2022, 906: 164331.
[28] [28] ZHU J T, MENG X Y, ZHANG P, et al. Dual-phase rare-earthzirconate high-entropy ceramics with glass-like thermal conductivity[J]. J Eur Ceram Soc, 2021, 41(4): 2861–2869.
[29] [29] MA M D, SUN Y N, WU Y J, et al. Nanocrystalline high-entropy carbide ceramics with improved mechanical properties[J]. J Am Ceram Soc, 2022, 105(1): 606–613.
[30] [30] LUO S C, GUO W M, PLUCKNETT K, et al. Fine-grained dual-phase high-entropy ceramics derived from boro/carbothermal reduction[J]. J Eur Ceram Soc, 2021, 41(6): 3189–3195.
[31] [31] DENG M, HUANG Z Y, GUO W Y, et al. An inverse Hall-Petch behavior and improving toughness in translucent nanocrystalline high-entropy zirconate ceramic[J]. J Eur Ceram Soc, 2023, 43(4):1746–1750.
[32] [32] MA M D, HAN Y J, ZHAO Z S, et al. Ultrafine-grained high-entropy zirconates with superior mechanical and thermal properties[J]. J Materiomics, 2023, 9(2): 370–377.
[33] [33] TAN L, SU X, YANG J, et al. Facile synthesis of high-entropy zirconate nanopowders and their sintering behaviors[J]. J Adv Ceram,2023, 12: 498–509.
[34] [34] ZHOU L, LIU J X, TU T Z, et al. Fast grain growth phenomenon in high-entropy ceramics: A case study in rare-earth hexaaluminates[J]. J Adv Ceram, 2023, 12(1): 111–121.
[35] [35] CHENG Y Y, ZHOU L, LIU J X, et al. Grain growth inhibition by sluggish diffusion and Zener pinning in high-entropy diboride ceramics[J]. J Am Ceram Soc, 2023, 106(8): 4997–5004.
[36] [36] WU Z T, JI W, ZHANG J Y, et al. Grain-refining fabrication of nanocrystalline (La0.2Nd0.2Sm0.2Gd0.2Eu0.2)2Zr2O7 high-entropy ceramics by ultra-high pressure sintering[J]. J Mater Sci Technol, 2023, 167:205–212.
[37] [37] LI X Y, ZHANG L, DONG Y H, et al. Pressureless two-step sintering of ultrafine-grained tungsten[J]. Acta Mater, 2020, 186: 116–123.
[38] [38] DONG Y H, YANG H B, ZHANG L, et al. Ultra-uniform nanocrystalline materials via two-step sintering[J]. Adv Funct Materials, 2021, 31(1): 2007750.
[39] [39] CHEN I W, WANG X H. Sintering dense nanocrystalline ceramics without final-stage grain growth[J]. Nature, 2000, 404(6774): 168–171.
[40] [40] QUE Z Y, LI X Y, ZHANG L, et al. Resolving the sintering conundrum of high-rhenium tungsten alloys[J]. J Mater Sci Technol,2023, 166: 78–85.
[41] [41] KANG W S, GUO X J, GAO B T, et al. Enhanced resistivity and piezoelectric response in BiFeO3-BaTiO3 via two-step sintering[J]. J Eur Ceram Soc, 2023, 43(14): 6041–6049.
[42] [42] TENG Z, ZHU L N, TAN Y Q, et al. Synthesis and structures of high-entropy pyrochlore oxides[J]. J Eur Ceram Soc, 2020, 40(4):1639–1643.
[43] [43] LI X J, YU H D, GAO S, et al. Preparation of high entropy ceramics with ultra-low lattice thermal conductivity using the high-pressure and high-temperature method[J]. Mater Charact, 2023, 199: 112792.
[44] [44] TENG Z, TAN Y Q, ZENG S F, et al. Preparation and phase evolution of high-entropy oxides A2B2O7 with multiple elements at A and B sites[J]. J Eur Ceram Soc, 2021, 41(6): 3614–3620.
[45] [45] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Cryst Sect A, 1976, 32(5): 751–767.
[46] [46] REN K, WANG Q K, SHAO G, et al. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating[J]. Scr Mater, 2020, 178: 382–386.
Get Citation
Copy Citation Text
GENG Chang, LI Yu, LI Linlin, ZHANG Shuai, LOU Chengguang, LI Wenjing, SU Xinghua. Preparation of Ultrafine-Grained (Ce0.2Nd0.2Sm0.2Gd0.2Y0.2)2Zr2O7 High-Entropy Ceramics via Pressureless Two-Step Sintering[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2915
Category:
Received: Jan. 28, 2024
Accepted: --
Published Online: Nov. 8, 2024
The Author Email: Xinghua SU (suxinghua@chd.edu.cn)