Optical Communication Technology, Volume. 48, Issue 2, 35(2022)
Research progress of industrial wireless optical technologies
[1] [1] VOLKER J, PABLO W B, ZSREELAL M, et al. LiFi for industrial wireless applications[C]//OSA. Proceedings of 2020 Optical Fiber Communications Conference and Exhibition (OFC). San Diego: OSA, 2020: 1-3.
[2] [2] LINNARTZ J P, CORREA C R B, CUNHA T E B, et al. ELIoT: new features in LiFi for next-generation IoT[C]//IEEE. Proceedings of 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). Porto: IEEE, 2021: 148-153.
[3] [3] CHANGA S. A visible light communication link protection mechanism for smart factory[C]//IEEE. Proceedings of 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops. Gwangju: IEEE, 2015: 733-737.
[4] [4] TELI S R, ZVANOVEC S, GHASSEMLOOY Z. Optical internet of things within 5G: applications and challenges [C]//IEEE. Proceedings of 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS). Bali: IEEE, 2018: 40-45.
[5] [5] WU S, WANG H, YOUN C. Visible light communications for 5G wireless networking systems: from fixed to mobile communications[J]. IEEE Network, 2014, 28(6): 41-45.
[6] [6] PARASKEVOPOULOS A, VUCIC J, VOB S, et al. Optical wireless communication systems in the Mb/s to Gb/s range, suitable for industrial applications [J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(4): 541-547.
[7] [7] BERENGUER P W, SCHULZ D, HILT J, et al. Optical wireless MIMO experiments in an industrial environment [J]. IEEE Journal on Selected Areas in Communications, 2018, 36(1): 185-193.
[8] [8] MANA S M, KOUHINI S M, HELLWIG P, et al. Distributed MIMO experiments for LiFi in a conference room [C]//IEEE. Proceedings of 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). Bali: IEEE, 2020: 1-5.
[9] [9] BERENGUER P W, SCHULZ D, FISCHER J K, et al. Optical wireless communications in industrial production environments [C]//IEEE. Proceedings of 2017 IEEE Photonics Conference (IPC). Orlando: IEEE, 2017: 1-2.
[10] [10] WANG Y, GUAN W, HUSSAIN B, et al. High precision indoor robot localization using VLC enabled smart lighting[C]//IEEE. Proceedings of 2021 Optical Fiber Communications Conference and Exhibition(OFC). San Francisco: OSA, 2021: 1-3
[11] [11] NGUYEN N T, SUEBSOMRAN A, SRIPIMANWAT K, et al. Design and simulation of a novel indoor mobile robot localization method using a light-emitting diode positioning system [J]. Transactions of the Institute of Measurement and Control, 2016, 38(3): 305-314.
[12] [12] ALMADANI Y, IJAZ M, RAJBHANDARI S, et al. Dead-zones limitation in visible light positioning systems for unmanned aerial vehicles [C]// IEEE. Proceedings of 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN). Zagreb: IEEE, 2019: 419-421.
[13] [13] KOUHINI S M, KOTTKE C, MA Z, et al. LiFi positioning for industry 4.0[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(6): 1-15,
[14] [14] DANIEL S, ABHIJEET S, HOLGER F, et al. Impact of industrial environments on visible light communication [J]. Optics Express, 2021, 29(11): 16087-16104.
[15] [15] CHAO W, HONG Y, YI Z, et al. Experimental study on SPAD-based VLC systems with an LED status indicator [J]. Optics Express, 2017, 25(23): 28783-28793.
[16] [16] BERENGUER P W., HELLWIG P, SCHULZ D, et al. Real-time optical wireless mobile communication with high physical layer reliability [J]. Journal of Lightwave Technology, 2019, 37(6): 1638-1646.
[17] [17] BERENGUER P W, HELLWIG P, RSCHULZ D, et al. Real-time optical wireless communication: field-trial in an industrial production environment[C]//IEEE. Proceedings of 2018 European Conference on Optical Communication (ECOC). Roma: IEEE, 2018: 1-3.
[18] [18] LACAUD M, NEGRU D. Multiple-source streaming over remote radio light head: a pragmatic, efficient and reliable video streaming system for 5G intra-building use cases [C]//IEEE. Proceedings of 2020 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Paris: IEEE, 2020: 1-6.
[19] [19] JAWAD N, SALIH M, SAADOON R, et al. Indoor unicasting/multicasting service based on 5G internet of radio light network paradigm [C]//IEEE. Proceedings of 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Jeju: IEEE, 2019: 1-6.
[20] [20] JAWAD N, SALIH M, COSMAS J, et al. Virtual gateway: local multimedia services and mobility management for 5G internet of radio light gNB [C]//IEEE. Proceedings of 2020 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Paris: IEEE, 2020: 1-6.
[21] [21] DING J P, I C L, XU Z Y. Indoor optical wireless channel characteristics with distinct source radiation patterns[J]. IEEE Photonics Journal, 2016, 8(1): 1-15.
[22] [22] DING J P, I C L, ZHANG H, et al. Cells planning of VLC networks using non-circular symmetric optical beam[C]//IEEE. Proceedings of 2019 IEEE International Conference on Communications (ICC). Shanghai: IEEE, 2019: 1-6.
[23] [23] DING J P, I C L, XIE R Y, et al. Actual radiation patterns-oriented non-deterministic optical wireless channel characterization[C]//Springer. Proceedings of 13th Chinese Conference on Biometric Recognition (CCBR 2018). Urumqi: Springer, 2018: 517-527.
[24] [24] DING J P, I C L, ZHANG C, et al. Evaluation of outdoor visible light communications links using actual LED street luminaries[C]//Springer. Proceedings of 13th Chinese Conference on Biometric Recognition (CCBR 2018). Urumqi: Springer, 2018: 572-579.
Get Citation
Copy Citation Text
DING Jupeng, I Chih-Lin, ZHAO Kai, WANG Jintao, YANG Hui, WANG Lili. Research progress of industrial wireless optical technologies[J]. Optical Communication Technology, 2022, 48(2): 35
Special Issue:
Received: Nov. 5, 2021
Accepted: --
Published Online: Jul. 21, 2022
The Author Email: