Chinese Optics Letters, Volume. 20, Issue 1, 010602(2022)

Spectrally U-shaped profile of beam propagation factor in all-solid photonic bandgap fiber

Xiao Chen, Liangjin Huang*, Yi An, Huan Yang, Zhiping Yan, Yisha Chen, Xiaoming Xi, Zhiyong Pan, and Pu Zhou**
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    References(31)

    [1] C. Xie, T. Ning, J. Zheng, L. Pei, J. Wang, J. Li, H. You, C. Wang, X. Gao. Amplification characteristics in active tapered segmented cladding fiber with large mode area. High Power Laser Sci. Eng., 9, e32(2021).

    [2] X. Zhang, S. F. Gao, Y. Y. Wang, W. Ding, P. Wang. Design of large mode area all-solid anti-resonant fiber for high-power lasers. High Power Laser Sci. Eng., 9, e23(2021).

    [3] U. Teğin, B. Rahmani, E. Kakkava, D. Psaltis, C. Moser. Single-mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers. Adv. Photon., 2, 056005(2020).

    [4] L. Huang, T. Yao, B. Yang, J. Leng, P. Zhou, Z. Pan, S. Gu, X. Cheng. Modified single trench fiber with effective single-mode operation for high-power application. IEEE J. Sel. Top. Quantum Electron., 24, 0901409(2018).

    [5] Y. Jeong, J. K. Sahu, D. N. Payne, J. Nilsson. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express, 12, 6088(2004).

    [6] L. Wang, D. He, C. Yu, S. Feng, L. Hu, D. Chen. Very large-mode-area, symmetry-reduced, neodymium-doped silicate glass all-solid large-pitch fiber. IEEE J. Sel. Top. Quantum Electron., 22, 4400105(2016).

    [7] L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, I. Dajani. Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities. IEEE J. Sel. Top. Quantum Electron., 22, 4900207(2016).

    [8] X. Hu, J. Peng, L. Yang, J. Li, H. Li, N. Dai. Design and fabrication of a heterostructured cladding solid-core photonic bandgap fiber for construction of Mach–Zehnder interferometer and high sensitive curvature sensor. Opt. Express, 26, 7005(2018).

    [9] M. Li, L. Wang, S. Han, C. Yu, D. Chen, W. Chen, L. Hu. Large-mode-area neodymium-doped all-solid double-cladding silicate photonic bandgap fiber with an index step of ∼0.5%. Chin. Opt. Lett., 16, 080601(2018).

    [10] X. Chen, L. Huang, X. Xi, H. Yang, Y. An, Z. Yan, Z. Pan, P. Zhou. Leakage channels enabled multi-resonant all-solid photonic bandgap fiber for effective single-mode propagation. Opt. Express, 29, 22455(2021).

    [11] O. Vanvincq, A. Cassez, R. Habert, H. E. Hamzaoui, K. Baudelle, S. Plus, D. Labat, M. Bouazaoui, Y. Quiquempois, G. Bouwmans, F. Audo, T. Chartier, E. Lallier, L. Bigot. Large mode area solid-core photonic bandgap Yb-doped fiber with hetero-structured cladding for compact high-power laser systems. J. Light. Technol., 39, 4809(2021).

    [12] G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, J. Luo. Low-loss all-solid photonic bandgap fiber. Opt. Lett., 32, 1023(2007).

    [13] W. Li, T. Matniyaz, S. Gafsi, M. T. Kalichevsky-Dong, T. W. Hawkins, J. Parsons, G. Gu, L. Dong. 151 W monolithic diffraction-limited Yb-doped photonic bandgap fiber laser at ∼978 nm. Opt. Express, 27, 24972(2019).

    [14] G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, L. Dong. Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers. Opt. Express, 22, 13962(2014).

    [15] M. Li, L. Wang, S. Han, D. Chen, C. Yu, W. Chen, L. Hu. Large-mode-area neodymium-doped all-solid double-cladding silicate photonic bandgap fiber with a 32 µm core diameter. Opt. Mater. Express, 8, 1562(2018).

    [16] F. Kong, G. Gu, T. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, B. Pulford, I. Dajani, L. Dong. ∼1 kilowatt ytterbium-doped all-solid photonic bandgap fiber laser. SPIE, 10083, 1008311(2017).

    [17] A. Baz, L. Bigot, G. Bouwmans, Y. Quiquempois. Single-mode, large mode area, solid-core photonic bandgap fiber with hetero-structured cladding. J. Lightwave Technol., 31, 830(2013).

    [18] G. Gu, F. Kong, T. W. Hawkins, M. Jones, L. Dong. Extending mode areas of single-mode all-solid photonic bandgap fibers. Opt. Express, 23, 9147(2015).

    [19] T. Taru, J. Hou, J. Knight. Raman gain suppression in all-solid photonic bandgap fiber. in European Conference and Exhibition of Optical Communication, 1(2007).

    [20] J. W. Nicholson, A. D. Yablon, S. Ramachandran, S. Ghalmi. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. Opt. Express, 16, 7233(2008).

    [21] D. Flamm, C. Schulze, D. Naidoo, S. Schroter, A. Forbes, M. Duparre. All-digital holographic tool for mode excitation and analysis in optical fibers. J. Lightwave Technol., 31, 1023(2013).

    [22] Y. An, L. Huang, J. Li, J. Leng, L. Yang, P. Zhou. Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Opt. Express, 27, 10127(2019).

    [23] S. Wielandy. Implications of higher-order mode content in large mode area fibers with good beam quality. Opt. Express, 15, 15402(2007).

    [24] H. Yoda, P. Polynkin, M. Mansuripur. Beam quality factor of higher order modes in a step-index fiber. J. Lightwave Technol., 24, 1350(2006).

    [25] F. Kong, K. Saitoh, D. McClane, T. Hawkins, P. Foy, G. Gu, L. Dong. Mode area scaling with all-solid photonic bandgap fibers. Opt. Express, 20, 26363(2012).

    [26] M. J. F. Digonnet, K. Hyang Kyun, G. S. Kino, F. Shanhui. Understanding air-core photonic-bandgap fibers: analogy to conventional fibers. J. Lightwave Technol., 23, 4169(2005).

    [28] F. Yu, M. Xu, J. C. Knight. Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers. Opt. Express, 24, 12969(2016).

    [29] D. Flamm, C. Schulze, R. Brüning, O. A. Schmidt, T. Kaiser, S. Schröter, M. Duparré. Fast M2 measurement for fiber beams based on modal analysis. Appl. Opt., 51, 987(2012).

    [30] R. Tao, L. Huang, P. Zhou, L. Si, Z. Liu. Propagation of high-power fiber laser with high-order-mode content. Photonics Res., 3, 192(2015).

    [31] N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, C. M. de Sterke. Resonances in microstructured optical waveguides. Opt. Express, 11, 1243(2003).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Xiao Chen, Liangjin Huang, Yi An, Huan Yang, Zhiping Yan, Yisha Chen, Xiaoming Xi, Zhiyong Pan, Pu Zhou. Spectrally U-shaped profile of beam propagation factor in all-solid photonic bandgap fiber[J]. Chinese Optics Letters, 2022, 20(1): 010602

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Aug. 30, 2021

    Accepted: Oct. 19, 2021

    Posted: Oct. 19, 2021

    Published Online: Nov. 25, 2021

    The Author Email: Liangjin Huang (hlj203@nudt.edu.cn), Pu Zhou (zhoupu203@163.com)

    DOI:10.3788/COL202220.010602

    Topics