Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2287(2023)
Recent Advances on Printing Technology for Perovskite Photovoltaics
[1] [1] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nat Photonics, 2014, 8(7): 506-514.
[2] [2] JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells[J]. Nature, 2021, 592(7854): 381-385.
[3] [3] BU T L, LI J, LI H Y, et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules[J]. Science, 2021, 372(6548): 1327-1332.
[4] [4] POPOOLA I K, GONDAL M A, QAHTAN T F. Recent progress in flexible perovskite solar cells: materials, mechanical tolerance and stability[J]. Renew Sustain Energy Rev, 2018, 82: 3127-3151.
[5] [5] NIU G D, GUO X D, WANG L D. Review of recent progress in chemical stability of perovskite solar cells[J]. J Mater Chem A, 2015, 3(17): 8970-8980.
[6] [6] BERHE T A, SU W N, CHEN C H, et al. Organometal halide perovskite solar cells: degradation and stability[J]. Energy Environ Sci, 2016, 9(2): 323-356.
[7] [7] CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells[J]. Science, 2017, 358(6364): 739-744.
[8] [8] NREL, Best research-cell efficiency chart[EB/OL]. (2023-03-01). https://www.nrel.gov/pv/publications.html.
[9] [9] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050-6051.
[10] [10] RONG Y G, HU Y, MEI A Y, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408): eaat8235.
[11] [11] YAN J F, SAUNDERS B R. Third-generation solar cells: a review and comparison of polymer: fullerene, hybrid polymer and perovskite solar cells[J]. RSC Adv, 2014, 4(82): 43286-43314.
[12] [12] ONO L K, LEYDEN M R, WANG S H, et al. Organometal halide perovskite thin films and solar cells by vapor deposition[J]. J Mater Chem A, 2016, 4(18): 6693-6713.
[13] [13] WANG P, WU Y H, CAI B, et al. Solution‐processable perovskite solar cells toward commercialization: progress and challenges[J]. Adv Funct Mater, 2019, 29 (47): 1807661.
[14] [14] PARK N G. Research direction toward scalable, stable, and high efficiency perovskite solar cells[J]. Adv Energy Mater, 2020, 10(13): 1903106.
[15] [15] PARK N G, ZHU K. Scalable fabrication and coating methods for perovskite solar cells and solar modules[J]. Nat Rev Mater, 2020, 5(5): 333-350.
[16] [16] WERNER J, NIESEN B, BALLIF C. Perovskite/silicon tandem solar cells: marriage of convenience or true love story? -An overview[J]. Adv Mater Interfaces, 2018, 5(1): 1700731.
[17] [17] FAGIOLARI L, BELLA F. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells[J]. Energy Environ Sci, 2019, 12(12): 3437-3472.
[18] [18] HUANG F, LI M J, SIFFALOVIC P, et al. From scalable solution fabrication of perovskite films towards commercialization of solar cells[J]. Energy Environ Sci, 2019, 12(2): 518-549.
[19] [19] WANG Q, PHUNG N, DI GIROLAMO D, et al. Enhancement in lifespan of halide perovskite solar cells[J]. Energy Environ Sci, 2019, 12(3): 865-886.
[20] [20] YE M D, HONG X D, ZHANG F Y, et al. Recent advancements in perovskite solar cells: flexibility, stability and large scale[J]. J Mater Chem A, 2016, 4(18): 6755-6771.
[21] [21] CHEN C S, CHEN J X, HAN H C, et al. Perovskite solar cells based on screen-printed thin films[J]. Nature, 2022, 612(7939): 266-271.
[22] [22] BU T, ONO L K, LI J, et al. Modulating crystal growth of formamidinium-caesium perovskites for over 200 cm2 photovoltaic sub-modules[J]. Nat Energy, 2022, 7 (6): 528-536.
[23] [23] LI P W, LIANG C, BAO B, et al. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells[J]. Nano Energy, 2018, 46: 203-211.
[24] [24] WOOK Y J, JIHUN J, UNSOO K, et al. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol- based formamidinium lead tri-iodide precursor solution[J]. Joule, 2021, 5(9): 2420-2436.
[25] [25] DAS S, YANG B, GU G, et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing[J]. ACS Photon, 2015, 2(6): 680-686.
[26] [26] SONG Z N, MCELVANY C L, PHILLIPS A B, et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques[J]. Energy Environ Sci, 2017, 10(6): 1297-1305.
[27] [27] KIM D H, WHITAKER J B, LI Z, et al. Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology[J]. Joule, 2018, 2(8): 1437-1451.
[28] [28] CHOI H, CHOI K, CHOI Y, et al. A review on reducing grain boundaries and morphological improvement of perovskite solar cells from methodology and material-based perspectives[J]. Small Methods, 2020, 4(5): 1900569.
[29] [29] JUNG M, JI S G, KIM G, et al. Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications[J]. Chem Soc Rev, 2019, 48(7): 2011-2038.
[30] [30] YANG Y Q, WU J H, WANG X B, et al. Suppressing vacancy defects and grain boundaries via Ostwald ripening for high-performance and stable perovskite solar cells[J]. Adv Mater, 2020, 32(7): 1904347.
[31] [31] HUANG F Z, DKHISSI Y, HUANG W C, et al. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells[J]. Nano Energy, 2014, 10: 10-18.
[32] [32] KONSTANTAKOU M, PERGANTI D, FALARAS P, et al. Anti-solvent crystallization strategies for highly efficient perovskite solar cells[J]. Crystals, 2017, 7(10): 291.
[33] [33] VAK D, HWANG K, FAULKS A, et al. 3D printer based slot-Die coater as a lab-to-fab translation tool for solution-processed solar cells[J]. Adv Energy Mater, 2015, 5(4): 1401539.
[34] [34] SCHMIDT T M, LARSEN-OLSEN T T, CARL J E, et al. Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes[J]. Adv Energy Mater, 2015, 5(15): 1500569.
[35] [35] HWANG K, JUNG Y S, HEO Y J, et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells[J]. Adv Mater, 2015, 27(7): 1241-1247.
[36] [36] TZOUNIS L, STERGIOPOULOS T, ZACHARIADIS A, et al. Perovskite solar cells from small scale spin coating process towards roll-to-roll printing: optical and Morphological studies[J]. Mater Today Proc, 2017, 4(4): 5082-5089.
[37] [37] HEO Y J, KIM J E, WEERASINGHE H, et al. Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells[J]. Nano Energy, 2017, 41: 443-451.
[38] [38] DOU B J, WHITAKER J B, BRUENING K, et al. Roll-to-roll printing of perovskite solar cells[J]. ACS Energy Lett, 2018, 3(10): 2558-2565.
[39] [39] GALAGAN Y, DI GIACOMO F, GORTER H, et al. Roll-to-roll slot Die coated perovskite for efficient flexible solar cells[J]. Adv Energy Mater, 2018, 8(32): 1801935.
[40] [40] ZUO C T, VAK D, ANGMO D C, et al. One-step roll-to-roll air processed high efficiency perovskite solar cells[J]. Nano Energy, 2018, 46: 185-192.
[41] [41] KIM J E, KIM S S, ZUO C T, et al. Humidity-tolerant roll-to-roll fabrication of perovskite solar cells via polymer-additive-assisted hot slot Die deposition[J]. Adv Funct Mater, 2019, 29(26): 1809194.
[42] [42] BURKITT D, PATIDAR R, GREENWOOD P, et al. Roll-to-roll slot-Die coated P-I-N perovskite solar cells using acetonitrile based single step perovskite solvent system[J]. Sustainable Energy Fuels, 2020, 4(7): 3340-3351.
[43] [43] GONG C D, TONG S C, HUANG K Q, et al. Flexible planar heterojunction perovskite solar cells fabricated via sequential roll-to-roll microgravure printing and slot-Die coating deposition[J]. Sol RRL, 2020, 4(2): 1900204.
[44] [44] ANGMO D C, DELUCA G, SCULLY A D, et al. A lab-to-fab study toward roll-to-roll fabrication of reproducible perovskite solar cells under ambient room conditions[J]. Cell Rep Phys Sci, 2021, 2(1): 100293.
[45] [45] HAM D S, CHOI W J, YUN H, et al. Influence of drying conditions on device performances of antisolvent-assisted roll-to-roll slot Die-coated perovskite solar cells[J]. ACS Appl Energy Mater, 2021, 4(8): 7611-7621.
[46] [46] BENITEZ-RODRIGUEZ J F, CHEN D H, SCULLY A D, et al. Slot-Die coating of a formamidinium-cesium mixed-cation perovskite for roll-to-roll fabrication of perovskite solar cells under ambient laboratory conditions[J]. Sol Energy Mater Sol Cells, 2022, 246: 111884.
[47] [47] CHANDRASEKHAR P S, CHAPAGAIN S, BLAKE M, et al. Rapid scalable fabrication of roll-to-roll slot-Die coated flexible perovskite solar cells using intense pulse light annealing[J]. Sustainable Energy Fuels, 2022, 6(23): 5316-5323.
[48] [48] OTHMAN M, ZHENG F, SEEBER A, et al. Millimeter-sized clusters of triple cation perovskite enables highly efficient and reproducible roll-to-roll fabricated inverted perovskite solar cells[J]. Adv Funct Mater, 2022, 32(12): 2110700.
[49] [49] KIM Y Y, PARK E Y, YANG T Y, et al. Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells[J]. J Mater Chem A, 2018, 6(26): 12447-12454.
[50] [50] ZIMMERMANN I, AL ATEM M, FOURNIER O, et al. Sequentially slot-Die-coated perovskite for efficient and scalable solar cells[J]. Adv Mater Interfaces, 2021, 8(18): 2100743.
[51] [51] EGGERS H, SCHACKMAR F, ABZIEHER T, et al. Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains[J]. Adv Energy Mater, 2020, 10(6): 1903184.
[52] [52] CHOU L H, WANG X F, OSAKA I, et al. Scalable ultrasonic spray-processing technique for manufacturing large-area CH3NH3PbI3 perovskite solar cells[J]. ACS Appl Mater Interfaces, 2018, 10(44): 38042-38050.
[53] [53] HE M, LI B, CUI X, et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells[J]. Nat Commun, 2017, 8(1): 1-10.
[54] [54] NIE S Q, FENG Q F, TANG Z H, et al. Scalable spray coated high performance sulfurized electron transporter for efficient and stable perovskite solar modules[J]. J Energy Chem, 2022, 75: 391-398.
[55] [55] YIN J L, SHI X Y, WANG L Y, et al. High-performance inverted perovskite solar devices enabled by a polyfullerene electron transporting material[J]. Angew Chem Int Ed, 2022, 61(52): e202210610.
[56] [56] LEE K M, CHIU W H, TSAI Y H, et al. High-performance perovskite solar cells based on dopant-free hole-transporting material fabricated by a thermal-assisted blade-coating method with efficiency exceeding 21%[J]. Chem Eng J, 2022, 427: 131609.
[57] [57] ZHAO J, FRER S O, MCMEEKIN D P, et al. Efficient and stable formamidinium-caesium perovskite solar cells and modules from lead acetate-based precursors[J]. Energy Environ Sci, 2023, 16(1): 138-147.
[58] [58] ARMSTRONG P J, CHANDRASEKHAR P S, CHAPAGAIN S, et al. Solvation of NiO x for hole transport layer deposition in perovskite solar cells[J]. Nanotechnology, 2022, 33(6): 065403.
[59] [59] HU J L, XU X, CHEN Y J, et al. Overcoming photovoltage deficitvianatural amino acid passivation for efficient perovskite solar cells and modules[J]. J Mater Chem A, 2021, 9(9): 5857-5865.
[60] [60] CHEN S S, DAI X Z, XU S, et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules[J]. Science, 2021, 373(6557): 902-907.
[61] [61] LI H Y, BU T L, LI J, et al. Ink engineering for blade coating FA-dominated perovskites in ambient air for efficient solar cells and modules[J]. ACS Appl Mater Interfaces, 2021, 13(16): 18724-18732.
[62] [62] YANG F, DONG L R, JANG D, et al. Low temperature processed fully printed efficient planar structure carbon electrode perovskite solar cells and modules[J]. Adv Energy Mater, 2021, 11(28): 2101219.
[63] [63] WANG Z, ZENG L X, ZHANG C L, et al. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%[J]. Adv Funct Mater, 2020, 30(32): 2001240.
[64] [64] DENG Y H, VAN BRACKLE C H, DAI X Z, et al. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films[J]. Sci Adv, 2019, 5(12): eaax7537.
[65] [65] HU J L, WANG C, QIU S D, et al. Spontaneously self-assembly of a 2D/3D heterostructure enhances the efficiency and stability in printed perovskite solar cells[J]. Adv Energy Mater, 2020, 10(17): 2000173.
[66] [66] ZHANG J W, BU T L, LI J, et al. Two-step sequential blade-coating of high quality perovskite layers for efficient solar cells and modules[J]. J Mater Chem A, 2020, 8(17): 8447-8454.
[67] [67] CHEN R H, WU Y Z, WANG Y K, et al. Crown ether-assisted growth and scaling up of FACsPbI3 films for efficient and stable perovskite solar modules[J]. Adv Funct Mater, 2021, 31(11): 2008760.
[68] [68] DAI X Z, DENG Y H, VAN BRACKLE C H, et al. Scalable fabrication of efficient perovskite solar modules on flexible glass substrates[J]. Adv Energy Mater, 2020, 10(1): 1903108.
[69] [69] GUO F, HE W X, QIU S D, et al. Sequential deposition of high-quality photovoltaic perovskite layers via scalable printing methods[J]. Adv Funct Mater, 2019, 29(24): 1900964.
[70] [70] MENG X C, CAI Z R, ZHANG Y Y, et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells[J]. Nat Commun, 2020, 11: 3016.
[71] [71] CHEN S S, XIAO X, GU H Y, et al. Iodine reduction for reproducible and high-performance perovskite solar cells and modules[J]. Sci Adv, 2021, 7(10): eabe8130.
[72] [72] WANG Z, LU Y L, XU Z H, et al. An embedding 2D/3D heterostructure enables high-performance FA-alloyed flexible perovskite solar cells with efficiency over 20%[J]. Adv Sci, 2021, 8(22): 2101856.
[73] [73] LI C P, YIN J, CHEN R H, et al. Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with >18% efficiency[J]. J Am Chem Soc, 2019, 141(15): 6345-6351.
[74] [74] XU Z Y, CHEN R H, WU Y Z, et al. Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules[J]. J Mater Chem A, 2019, 7(47): 26849-26857.
[75] [75] YANG M J, KIM D H, KLEIN T R, et al. Highly efficient perovskite solar modules by scalable fabrication and interconnection optimization[J]. ACS Energy Lett, 2018, 3(2): 322-328.
[76] [76] ZHENG X P, DENG Y H, CHEN B, et al. Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells[J]. Adv Mater, 2018, 30(52): 1803428.
[77] [77] DENG Y H, PENG E, SHAO Y C, et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers[J]. Energy Environ Sci, 2015, 8(5): 1544-1550.
[78] [78] ZHONG Y F, MUNIR R, LI J B, et al. Blade-coated hybrid perovskite solar cells with efficiency > 17%: an in situ investigation[J]. ACS Energy Lett, 2018, 3(5): 1078-1085.
[79] [79] JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nat Photon, 2019, 13(7): 460-466.
[80] [80] CHAO L F, NIU T T, GAO W Y, et al. Solvent engineering of the precursor solution toward large-area production of perovskite solar cells[J]. Adv Mater, 2021, 33(14): 2005410.
[81] [81] HUANG S H, TIAN K Y, HUANG H C, et al. Controlling the morphology and interface of the perovskite layer for scalable high-efficiency solar cells fabricated using green solvents and blade coating in an ambient environment[J]. ACS Appl Mater Interfaces, 2020, 12(23): 26041-26049.
[82] [82] BI Z N, RODRGUEZ-MARTNEZ X, ARANDA C, et al. Defect tolerant perovskite solar cells from blade coated non-toxic solvents[J]. J Mater Chem A, 2018, 6(39): 19085-19093.
[83] [83] YANG F, DONG L R, JANG D, et al. Fully solution processed pure α-phase formamidinium lead iodide perovskite solar cells for scalable production in ambient condition[J]. Adv Energy Mater, 2020, 10(42): 2001869.
[84] [84] WHITAKER J B, KIM D H, LARSON B, et al. Scalable slot-Die coating of high performance perovskite solar cells[J]. Sustainable Energy Fuels, 2018, 2(11): 2442-2449.
[85] [85] BURKITT D, SWARTWOUT R, MCGETTRICK J, et al. Acetonitrile based single step slot-Die compatible perovskite ink for flexible photovoltaics[J]. RSC Adv, 2019, 9(64): 37415-37423.
[86] [86] SEO Y H, CHO S P, LEE H J, et al. Temperature-controlled slot-Die coating for efficient and stable perovskite solar cells[J]. J Power Sources, 2022, 539: 231621.
[87] [87] YE F, XIE F X, YIN M S, et al. Effect of thermal-convection-induced defects on the performance of perovskite solar cells[J]. Appl Phys Express, 2017, 10(7): 075502.
[88] [88] VERMA A, MARTINEAU D, HACK E, et al. Towards industrialization of perovskite solar cells using slot Die coating[J]. J Mater Chem C, 2020, 8(18): 6124-6135.
[89] [89] LE T S, SARANIN D, GOSTISHCHEV P, et al. All-slot-Die-coated inverted perovskite solar cells in ambient conditions with chlorine additives[J]. Sol RRL, 2022, 6(2): 2100807.
[90] [90] ZARABINIA N, LUCARELLI G, RASULI R, et al. Simple and effective deposition method for solar cell perovskite films using a sheet of paper[J]. iScience, 2022, 25(2): 103712.
[91] [91] DU M Y, ZHU X J, WANG L K, et al. High-pressure nitrogen- extraction and effective passivation to attain highest large-area perovskite solar module efficiency[J]. Adv Mater, 2020, 32(47): 2004979.
[92] [92] LEE D, JUNG Y S, HEO Y J, et al. Slot-Die coated perovskite films using mixed lead precursors for highly reproducible and large-area solar cells[J]. ACS Appl Mater Interfaces, 2018, 10(18): 16133-16139.
[93] [93] LI J Z, DAGAR J, SHARGAIEVA O, et al. 20.8% slot-Die coated MAPbI3 perovskite solar cells by optimal DMSO-content and age of 2-ME based precursor inks[J]. Adv Energy Mater, 2021, 11(10): 2003460.
[94] [94] BU T L, LI J, ZHENG F, et al. Universal passivation strategy to slot-Die printed SnO2 for hysteresis-free efficient flexible perovskite solar module[J]. Nat Commun, 2018, 9(1): 1-10.
[95] [95] ZIMMERMANN I, PROVOST M, MEJAOURI S, et al. Industrially compatible fabrication process of perovskite-based mini-modules coupling sequential slot-Die coating and chemical bath deposition[J]. ACS Appl Mater Interfaces, 2022, 14(9): 11636-11644.
[96] [96] LIU H R, YAN K R, RAO J, et al. Self-assembled donor-acceptor dyad molecules stabilize the heterojunction of inverted perovskite solar cells and modules[J]. ACS Appl Mater Interfaces, 2022, 14(5): 6794-6800.
[97] [97] YANG Z C, ZHANG W J, WU S H, et al. Slot-Die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module[J]. Sci Adv, 2021, 7(18): eabg3749.
[98] [98] GU L L, FEI F, XU Y B, et al. Vacuum quenching for large-area perovskite film deposition[J]. ACS Appl Mater Interfaces, 2022, 14(2): 2949-2957.
[99] [99] YANG D N, MA M G, LI Y, et al. FA cation replenishment-induced second growth of printed MA-free perovskites for efficient solar cells and modules[J]. Chem Commun, 2023, 59(11): 1521-1524.
[100] [100] RANA P J S, FEBRIANSYAH B, KOH T M, et al. Alkali additives enable efficient large area (>55 cm2) slot-Die coated perovskite solar modules[J]. Adv Funct Mater, 2022, 32(22): 2113026.
[101] [101] XU M, JI W X, SHENG Y S, et al. Efficient triple-mesoscopic perovskite solar mini-modules fabricated with slot-Die coating[J]. Nano Energy, 2020, 74: 104842.
[102] [102] DI GIACOMO F, SHANMUGAM S, FLEDDERUS H, et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot Die coating[J]. Sol Energy Mater Sol Cells, 2018, 181: 53-59.
[103] [103] DU M Y, ZHAO S, DUAN L J, et al. Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules[J]. Joule, 2022, 6(8): 1931-1943.
[104] [104] WU Z Y, LIU X L, ZHONG H, et al. Natural amino acid enables scalable fabrication of high‐performance flexible perovskite solar cells and modules with areas over 300 cm2[J]. Small Methods, 2022, 6(12): 2200669.
[105] [105] HUANG S H, GUAN C K, LEE P H, et al. Perovskite solar cells: toward all slot-Die fabricated high efficiency large area perovskite solar cell using rapid near infrared heating in ambient air (adv. energy mater. 37/2020)[J]. Adv Energy Mater, 2020, 10(37): 2070155.
[106] [106] VIJAYAN A, JOHANSSON M B, SVANSTRM S, et al. Simple method for efficient slot-Die coating of MAPbI3 perovskite thin films in ambient air conditions[J]. ACS Appl Energy Mater, 2020, 3(5): 4331-4337.
[107] [107] COTELLA G, BAKER J, WORSLEY D, et al. One-step deposition by slot-Die coating of mixed lead halide perovskite for photovoltaic applications[J]. Sol Energy Mater Sol Cells, 2017, 159: 362-369.
[108] [108] FIEVEZ M, SINGH RANA P J, KOH T M, et al. Slot-Die coated methylammonium-free perovskite solar cells with 18% efficiency[J]. Sol Energy Mater Sol Cells, 2021, 230: 111189.
[109] [109] KIM J E, JUNG Y S, HEO Y J, et al. Slot Die coated planar perovskite solar cells via blowing and heating assisted one step deposition[J]. Sol Energy Mater Sol Cells, 2018, 179: 80-86.
[110] [110] HUANG Y C, LI C F, HUANG Z H, et al. Rapid and sheet-to-sheet slot-Die coating manufacture of highly efficient perovskite solar cells processed under ambient air[J]. Sol Energy, 2019, 177: 255-261.
[111] [111] KAMARAKI C, ZACHARIADIS A, KAPNOPOULOS C, et al. Efficient flexible printed perovskite solar cells based on lead acetate precursor[J]. Sol Energy, 2018, 176: 406-411.
[112] [112] HSIAO K, JAO M H, LI B T, et al. Enhancing efficiency and stability of hot casting p-i-n perovskite solar cell via dipolar ion passivation[J]. ACS Appl Energy Mater, 2019, 2(7): 4821-4832.
[113] [113] TANG S, BING J, ZHENG J, et al. Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenching[J]. Cell Rep Phys Sci, 2021, 2(8): 100511.
[114] [114] HOWLADER C Q, MISHRA B, KHAKUREL N, et al. Fabricate anti-solvent free tin-lead based perovskite solar cells with MAAc additives[C]//SPIE Organic Photonics + Electronics. Proc SPIE 12209, Organic, Hybrid, and Perovskite Photovoltaics XXIII, San Diego, California, USA. 2022, 12209: 27-32.
[115] [115] LEE H J, KANG Y J, KWON S N, et al. Efficient slot-Die-processed perovskite solar cells with 3-allyloxy-1, 2-propanediol additive[J]. IEEE J Photovolt, 2022, 12(2): 634-638.
[116] [116] LEE H J, NA S I. Efficient mixed-cation perovskite photovoltaic cells via additive-assisted slot-Die deposition[J]. Mater Res Bull, 2022, 149: 111728.
[117] [117] LEE H J, NA S I. Performance improvement of slot-Die-deposition based perovskite solar cells using diglycolic acid additives[J]. Mater Lett, 2022, 312: 131651.
[118] [118] XU K, AL-ASHOURI A, PENG Z W, et al. Slot-Die coated triple-halide perovskites for efficient and scalable perovskite/silicon tandem solar cells[J]. ACS Energy Lett, 2022, 7(10): 3600-3611.
[119] [119] LIU X, XIA X X, CAI Q Q, et al. Efficient planar heterojunction perovskite solar cells with weak hysteresis fabricated via bar coating[J]. Sol Energy Mater Sol Cells, 2017, 159: 412-417.
[120] [120] JEONG D N, LEE D K, SEO S, et al. Perovskite cluster-containing solution for scalable D-bar coating toward high-throughput perovskite solar cells[J]. ACS Energy Lett, 2019, 4(5): 1189-1195.
[121] [121] JU Y, PARK S Y, YEOM K M, et al. Single-solution bar-coated halide perovskite films via mediating crystallization for scalable solar cell fabrication[J]. ACS Appl Mater Interfaces, 2019, 11(12): 11537-11544.
[122] [122] LIM K S, LEE D K, LEE J W, et al. 17% efficient perovskite solar mini-module via hexamethylphosphoramide (HMPA)-adduct-based large-area D-bar coating[J]. J Mater Chem A, 2020, 8(18): 9345-9354.
[123] [123] GAO B W, MENG J. Flexible CH3NH3PbI3 perovskite solar cells with high stability based on all inkjet printing[J]. Sol Energy, 2021, 230: 598-604.
[124] [124] SCHACKMAR F, EGGERS H, FRERICKS M, et al. Perovskite solar cells with all-inkjet-printed absorber and charge transport layers[J]. Adv Mater Technol, 2021, 6(2): 2000271.
[125] [125] WILK B, SAHAYARAJ S, ZIEK M, et al. Inkjet printing of quasi-2D perovskite layers with optimized drying protocol for efficient solar cells[J]. Adv Mater Technol, 2022, 7(12): 2200606.
[126] [126] LI S G, JIANG K J, SU M J, et al. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells[J]. J Mater Chem A, 2015, 3(17): 9092-9097.
[127] [127] MATHIES F, ABZIEHER T, HOCHSTUHL A, et al. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells[J]. J Mater Chem A, 2016, 4(48): 19207-19213.
[128] [128] MATHIES F, EGGERS H, RICHARDS B S, et al. Inkjet-printed triple cation perovskite solar cells[J]. ACS Appl Energy Mater, 2018, 1(5): 1834-1839.
[129] [129] GHENO A, HUANG Y, BOUCL J, et al. Toward highly efficient inkjet-printed perovskite solar cells fully processed under ambient conditions and at low temperature[J]. Sol RRL, 2018, 2(11): 1800191.
[130] [130] HUCKABA A J, LEE Y H, XIA R, et al. Inkjet-printed mesoporous TiO2 and perovskite layers for high efficiency perovskite solar cells[J]. Energy Technol, 2019, 7(2): 317-324.
[131] [131] RAMINAFSHAR C, DRACOPOULOS V, MOHAMMADI M R, et al. Carbon based perovskite solar cells constructed by screen-printed components[J]. Electrochim Acta, 2018, 276: 261-267.
[132] [132] MARTINEZ V C, XIE H, MINGORANCE A, et al. Carbon-based perovskite solar cells by screen printing with preheating[J]. J Phys: Conf Ser, 2020, 1433(1): 012009.
[133] [133] RI J H, RYU G I, KIM B, et al. Effect of polyethylene glycol as additive for fully screen-printable perovskite solar cells[J].J Electron Mater, 2020, 49(12): 7065-7071.
[134] [134] KIM P, SO C I, RYU K I, et al. Effect of adding cobalt acetate on performance of fully screen-printable perovskite solar cells[J].J Electron Mater, 2022, 51(1): 104-109.
[136] [136] HUANG H B, SHI J J, ZHU L F, et al. Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell[J]. Nano Energy, 2016, 27: 352-358.
[138] [138] FAKHARUDDIN A, PALMA A L, DI GIACOMO F, et al. Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd: YVO4 laser patterned rutile TiO2 nanorods[J]. Nanotechnology, 2015, 26(49): 494002.
[139] [139] MOON S J, YUM J H, LFGREN L, et al. Laser-scribing patterning for the production of organometallic halide perovskite solar modules[J]. IEEE J Photovolt, 2015, 5(4): 1087-1092.
[140] [140] JEON T, JIN H M, LEE S H, et al. Laser crystallization of organic-inorganic hybrid perovskite solar cells[J]. ACS Nano, 2016, 10(8): 7907-7914.
[142] [142] PALMA A L, MATTEOCCI F, AGRESTI A, et al. Laser-patterning engineering for perovskite solar modules with 95% aperture ratio[J]. IEEE J Photovolt, 2017, 7(6): 1674-1680.
[143] [143] JIANG Z Y, WANG B K, ZHANG W J, et al. Solvent engineering towards scalable fabrication of high-quality perovskite films for efficient solar modules[J]. J Energy Chem, 2023, 80: 689-710.
Get Citation
Copy Citation Text
JIANG Ruixuan, KE Bingcan, ZHU Zewei, TONG Jinhui, BU Tongle, HUANG Fuzhi. Recent Advances on Printing Technology for Perovskite Photovoltaics[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2287
Category:
Received: Apr. 1, 2023
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: Ruixuan JIANG (jiangruixuan@whut.edu.cn)
CSTR:32186.14.