Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 1128(2024)
Development on Spectral Regulation of Ce3+-Doped Garnet-Based Fluorescent Materials
[1] [1] HU Pan, DING Hui, LIU Yongfu, et al. Chin J Lumin, 2020, 41(12): 1504-1528.
[2] [2] KANG Jian, ZHANG Ng, ZHEN Fangzheng, et al. Prog Chem, 2019, 31(Suppl 1): 322-336.
[3] [3] LI Jiang, LI Wanyuan, LIU Xin, et al. Chin J Lumin, 2021, 42(5): 580-604.
[4] [4] XU Jian, JIANG Zhi, XU Peng, et al. Chin J Lumin, 2021, 42(10): 1637-1645.
[5] [5] SUN Bingheng, JIANG Benxue, FAN Jintai, et al. Chin J Lumin, 2021, 42(10): 1585-1618.
[6] [6] ZHOU T Y, HOU C, ZHANG L, et al. Efficient spectral regulation in Ce:Lu3(Al, Cr)5O12 and Ce:Lu3(Al, Cr)5O12/Ce:Y3Al5O12 transparent ceramics with high color rendering index for high-power white LEDs/LDs[J]. J Adv Ceram, 2021, 10(5): 1107-1118.
[7] [7] LIU Z H, HU P, JIANG H J, et al. CaAlSiN3:Eu2+/Lu3Al5O12:Ce3+ phosphor-in-glass film with high luminous efficiency and CRI for laser diode lighting[J]. J Mater Chem C, 2021, 9(10): 3522-3530.
[8] [8] XIA Z G, MEIJERINK A. Ce3+-doped garnet phosphors: Composition modification, luminescence properties and applications[J]. Chem Soc Rev, 2017, 46(1): 275-299.
[9] [9] HAO Z D, ZHANG X, PAN G H, et al. Eff icient energy back transfer from Ce3+ 5d state to Pr3+ 1D2 level in Lu3Al5O12 upon Pr3+ 4f5d excitation[J]. J Lumin, 2017, 186: 170-174.
[10] [10] JI H P, WANG L, MOLOKEEV M S, et al. Structure evolution and photoluminescence of Lu3(Al, Mg)2(Al, Si)3O12:Ce3+ phosphors: New yellow-color converters for blue LED-driven solid state lighting[J]. J Mater Chem C, 2016, 4(28): 6855-6863.
[11] [11] SUN P, HU P, LIU Y F, et al. Broadband emissions from Lu2Mg2Al2Si2O12:Ce3+ plate ceramic phosphors enable a high color-rendering index for laser-driven lighting[J]. J Mater Chem C, 2020, 8(4): 1405-1412.
[12] [12] HUANG J, NI Y R, MA Y L, et al. Composite structure Cr:YAG/Ce: YAG and (Ce, Cr):YAG/Ce:YAG transparent ceramics with high color rendering index for white LEDs/LDs[J]. Ceram Int, 2021, 47(8): 11415-11422.
[13] [13] TIAN Yanna, DU Ying, SHEN Qiaoqiao, et al. Chin J Inorg Chem, 2016, 32(10): 1771-1776.
[14] [14] SUN B H, JIANG B X, ZHANG L. Samarium and manganese incorporation to improve color rendering of LuAG:Ce3+ phosphor ceramics for laser-driven lighting: A Color-tunable and energy transfer study[J]. J Mater Chem C, 2021, 9(46): 16468-16476.
[15] [15] LING J R, ZHANG Y, YANG J A, et al. A single-structured LuAG:Ce, Mn phosphor ceramics with high CRI for high-power white LEDs[J]. J Am Ceram Soc, 2022, 105(9): 5738-5750.
[16] [16] ZHANG X Y, ZHANG L, HOU C, et al. Highly efficient Ce:Lu(Mg, Al)2(Si, Al)3O12 phosphor ceramics for high-power white LEDs/LDs[J]. Opt Express, 2022, 30(14): 25078-25092.
[17] [17] SUN B H, JIANG B X, FAN J T, et al. Mn ions-activated Gd3(Al, Ga)5O12 garnet solid-solution ceramics: Cation substitution for dual wavelength red-emission[J]. J Am Ceram Soc, 2023, 106(1): 513-526.
[18] [18] LI X Y, CHEN J, LIU Z G, et al. (Ce, Gd): YAG-Al2O3 composite ceramics for high-brightness yellow light-emitting diode applications[J]. J Eur Ceram Soc, 2022, 42(3): 1121-1131.
[19] [19] TAO C J, LI P L, LI Q S, et al. Improvement of thermal stability and photoluminescence in Mg2Y2Al2Si2O12:Ce3+ by the cation substitution of Ca2+, Sr2+ and Ba2+ ions[J]. Dalton Trans, 2021, 50(37): 13138-13148.
[20] [20] LIANG J, SUN L L, WANG S Y, et al. Filling the cyan gap toward full-visible-spectrum LED lighting with Ca2LaHf2Al3O12:Ce3+ broadband green phosphor[J]. J Alloys Compd, 2020, 836: 155469.
[21] [21] LIANG J, DEVAKUMAR B, SUN L L, et al. Full-visible-spectrum lighting enabled by an excellent cyan-emitting garnet phosphor[J]. J Mater Chem C, 2020, 8(14): 4934-4943.
[22] [22] WU J L, GUNDIAH G, CHEETHAM A K. Structure-property correlations in Ce-doped garnet phosphors for use in solid state lighting[J]. Chem Phys Lett, 2007, 441(4/6): 250-254.
[23] [23] SETLUR A A, HEWARD W J, HANNAH M E, et al. Incorporation of Si4+-N3- into Ce3+-doped garnets for warm white LED phosphors[J]. Chem Mater, 2008, 20(19): 6277-6283.
[24] [24] LIU Y F, ZHANG X, HAO Z D, et al. Generation of broadband emission by incorporating N3? into Ca3Sc2Si3O12:Ce3+ garnet for high rendering white LEDs[J]. J Mater Chem, 2011, 21(17): 6354-6358.
[25] [25] HE X W, LIU X F, YOU C Y, et al. Clarifying the preferential occupation of Ga3+ ions in YAG:Ce, Ga nanocrystals with various Ga3+-doping concentrations by nuclear magnetic resonance spectroscopy[J]. J Mater Chem C, 2016, 4(45): 10691-10700.
[26] [26] NAKAUCHI D, OKADA G, KAWANO N, et al. Effects of Ga substitution in Ce:Tb3GaxAl5-xO12 single crystals for scintillator applications[J]. Jpn J Appl Phys, 2018, 57(2S2): 02CB02.
[27] [27] TANG H D, LI Y F, YANG R, et al. Optical properties of a novel Ce3+-activated antimony garnet-like Y3Sb5O12 phosphor[J]. Ceram Int, 2018, 44(16): 19892-19899.
[28] [28] KHAIDUKOV N M, MAKHOV V N, ZHANG Q H, et al. Extended broadband luminescence of dodecahedral multisite Ce3+ ions in garnets{Y3}[MgA](BAlSi)O12 (a=Sc, Ga, Al; B=Ga, Al)[J]. Dyes Pigm, 2017, 142: 524-529.
[29] [29] JIA J J, QIANG Y C, XU J F, et al. A comparison study on the substitution of Y3+-Al3+ by M2+-Si4+ (M=Ba, Sr, Ca, Mg) in Y3Al5O12: Ce3+ phosphor[J]. J Am Ceram Soc, 2020, 103(9): 5111-5119.
[30] [30] ZHANG K, HU W B, WU Y T, et al. Photoluminescence investigations of (Y1?xLnx)3Al5O12:Ce (Ln3+=Gd3+, La3+) nanophosphors[J]. Phys B Condens Matter, 2008, 403(10-11): 1678-1681.
[31] [31] LIN Y S, LIU R S. Chemical substitution effects of Tb3+ in YAG:Ce phosphors and enhancement of their emission intensity using flux combination[J]. J Lumin, 2007, 122-123: 580-582.
[32] [32] SONG Z, XIA Z G, LIU Q L. Insight into the relationship between crystal structure and crystal-field splitting of Ce3+ doped garnet compounds[J]. J Phys Chem C, 2018, 122(6): 3567-3574.
[33] [33] BI J, WANG X J, MOLOKEEV M S, et al. The effects of Ga3+ substitution on local structure and photoluminescence of Tb3Al5O12:Ce garnet phosphor[J]. Ceram Int, 2018, 44(7): 8684-8690.
[34] [34] DU Q P, FENG S W, QIN H M, et al. Massive red-shifting of Ce3+ emission by Mg2+ and Si4+ doping of YAG:Ce transparent ceramic phosphors[J]. J Mater Chem C, 2018, 6(45): 12200-12205.
[35] [35] SEIJO L, BARANDIARáN Z. 4f and 5d Levels of Ce3+ in D2 8-fold oxygen coordination[J]. Opt Mater, 2013, 35(11): 1932-1940.
[36] [36] SEIJO L, BARANDIARáN Z. Host effects on the optically active 4f and 5d levels of Ce3+ in garnets[J]. Phys Chem Chem Phys, 2013, 15(44): 19221-19231.
[37] [37] SEIJO L, BARANDIARáN Z. Red shifts of the yellow emission of YAG:Ce3+ due to tetragonal fields induced by cationic substitutions[J]. RSC Adv, 2016, 6(31): 25741-25743.
[38] [38] TIAN Y N, CHEN J, YI X Z, et al. Unravel the effect of lattice distortion on the 4f-5d excitation of Ce3+ in garnet phosphors[J]. J Alloys Compd, 2022, 907: 164412.
[39] [39] LI Y K, LUO Z H, LIU Y F, et al. Ce:YScAG phosphor-converted transparent ceramics with high thermal saturation and weak concentration quenching for LED and LD white lighting[J]. Ceram Int, 2023, 49(2): 2051-2060.
[40] [40] GUO W, SHI H L, HUANG J Q, et al. Chin J Struct Chem, 2016, 35(2): 326-334.
[41] [41] PARK K, KIM H, KIM D H, et al. Influence of lattice distortions on the emission wavelengths of Y3+- and Gd3+-substituted Lu3Al5O12:Ce3+ phosphors[J]. Ceram Int, 2023, 49(10): 15176-15182.
[42] [42] QIAO J, SHEN L J, XIAO W G, et al. Photoluminescence and charge compensation effects in Lu3MgyAl5?x?ySixO12:Ce3+ phosphors for white LEDs[J]. J Alloys Compd, 2017, 695: 567-573.
[43] [43] MENG Q H, LI J G, ZHU Q, et al. The effects of Mg2+/Si4+ substitution on crystal structure, local coordination and photoluminescence of (Gd, Lu)3Al5O12:Ce garnet phosphor[J]. J Alloys Compd, 2019, 797: 477-485.
[44] [44] KOTTAISAMY M, THIYAGARAJAN P, MISHRA J, et al. Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs[J]. Mater Res Bull, 2008, 43(7): 1657-1663.
[45] [45] PARK K, KIM H, JUNG G W, et al. Development of a correlation between lattice distortion factors and emission wavelengths in Ga-substituted Lu3(Al1-xGax)5O12:Ce3+ (0≤x≤0.5) phosphors[J]. J Alloys Compd, 2022, 921: 166019.
[46] [46] HUA H, FENG S W, OUYANG Z Y, et al. YAGG:Ce transparent ceramics with high luminous efficiency for solid-state lighting application[J]. J Adv Ceram, 2019, 8(3): 389-398.
[47] [47] UEDA J, TANABE S, NAKANISHI T. Analysis of Ce luminescence quenching in solid solutions between Y(3)Al(5)O(12) and Y(3)Ga(5)O(12) by temperature dependence of photoconductivity measurement[J]. J Appl Phys, 2011, 110(5): 53102-531026.
[48] [48] UEDA J, AISHIMA K, TANABE S. Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3?xGaxO12 (x=0, 1, 2, 3)[J]. Opt Mater, 2013, 35(11): 1952-1957.
[49] [49] FU S, TAN J, BAI X, et al. Effect of Al/Ga substitution on the structural and luminescence properties of Y3(Al1-xGax)5O12:Ce3+ phosphors[J]. Opt Mater, 2018, 75: 619-625.
[50] [50] WANG S F, ZHANG J, LUO D W, et al. Transparent ceramics: Processing, materials and applications[J]. Prog Solid State Chem, 2013, 41(1-2): 20-54.
[51] [51] ZHANG W M, JIANG L P, CHENG L Q, et al. Weak thermal quenching of the luminescence in Y2.94-xLuxAl4GaO12:0.06Ce3+ green phosphor for white light-emitting diodes[J]. Ceram Int, 2019, 45(17): 23451-23457.
[52] [52] DEVYS L, DANTELLE G, LAURITA G, et al. A strategy to increase phosphor brightness: Application with Ce3+-doped Gd3Sc2Al3O12[J]. J Lumin, 2017, 190: 62-68.
[53] [53] DING H, LIU Z H, LIU Y F, et al. Gd3Al3Ga2O12:Ce, Mg2+ transparent ceramic phosphors for high-power white LEDs/LDs[J]. Ceram Int, 2021, 47(6): 7918-7924.
[54] [54] LUO Y, XIA Z G. Effect of Al/Ga substitution on photoluminescence and phosphorescence properties of garnet-type Y3Sc2Ga3-xAlxO12:Ce3+ phosphor[J]. J Phys Chem C, 2014, 118(40): 23297-23305.
[55] [55] CHAN J M, DEVAKUMAR B, LI W, et al. Full-spectrum solid-state white lighting with high color rendering index exceeding 96 based on a bright broadband green-emitting phosphor[J]. Appl Mater Today, 2022, 27: 101439.
[56] [56] WANG X C, ZHAO Z Y, WU Q S, et al. Synthesis, structure and photoluminescence properties of Ca2LuHf2(AlO4)3:Ce3+, a novel garnet-based cyan light-emitting phosphor[J]. J Mater Chem C, 2016, 4(48): 11396-11403.
[57] [57] CHAN J M, CAO L N, XU Z, et al. Cation substitution induced highly symmetric crystal structure in cyan-green-emitting Ca2La1-xLuxHf2Al3O12:Ce3+ solid-solution phosphors with enhanced photoluminescence emission and thermal stability: Toward full-visible-spectrum white LEDs[J]. Mater Today Phys, 2023, 35: 101130.
[58] [58] SUN Q, WANG S Y, SUN L L, et al. Achieving full-visible-spectrum LED lighting via employing an efficient Ce3+-activated cyan phosphor[J]. Mater Today Energy, 2020, 17: 100448.
[59] [59] CAO L N, LI W, DEVAKUMAR B, et al. Full-spectrum white light-emitting diodes enabled by an efficient broadband green-emitting CaY2ZrScAl3O12:Ce3+ garnet phosphor[J]. ACS Appl Mater Interfaces, 2022, 14(4): 5643-5652.
[60] [60] CAO L N, XU Z, CHAN J M, et al. Realizing full-spectrum LED lighting with a bright broadband cyan-green-emitting CaY2ZrGaAl3O12:Ce3+ garnet phosphor[J]. J Lumin, 2023, 263: 120015.
[61] [61] GONG X H, HUANG J H, CHEN Y J, et al. Novel garnet-structure Ca2GdZr2(AlO4)3:Ce3+ phosphor and its structural tuning of optical properties[J]. Inorg Chem, 2014, 53(13): 6607-6614.
[62] [62] SHAKHNO A, MARKOVSKYI A, ZORENKO T, et al. Micropowder Ca2YMgScSi3O12:Ce silicate garnet as an efficient light converter for white LEDs[J]. Materials, 2022, 15(11): 3942.
[63] [63] HUANG X Y, XU Z, DEVAKUMAR B. Near-UV-excitable broadband green-emitting Ca2LaHf2GaAl2O12:Ce3+ garnet-type phosphors for high color rendering warm-white LEDs[J]. Ceram Int, 2023, 49(16): 26420-26427.
[64] [64] WANG Y C, DING J Y, WANG Y H. Ca2-xY1+xZr2-xAl3+xO12:Ce3+: Solid solution design toward the green emission garnet structure phosphor for near-UV LEDs and their luminescence properties[J]. J Phys Chem C, 2017, 121(48): 27018-27028.
[65] [65] QU M Y, PANG Z P, LI T Q, et al. Wide-band blue-emitting in Ce3+ doped Ca2YZr2Al3O12 garnet-type phosphor designed via local structural lattice distortion and synthesized in nonreducing atmosphere[J]. Ceram Int, 2023, 49(1): 792-800.
[66] [66] SUN L L, DEVAKUMAR B, LIANG J A, et al. A broadband cyan-emitting Ca2LuZr2(AlO4)3:Ce3+ garnet phosphor for near-ultraviolet-pumped warm-white light-emitting diodes with an improved color rendering index[J]. J Mater Chem C, 2020, 8(3): 1095-1103.
[67] [67] HUANG D Y, LIU Z Y, WANG B, et al. Highly efficient yellow-orange emission and superior thermal stability of Ba2YAl3Si2O12:Ce3+ for high-power solid lighting[J]. J Am Ceram Soc, 2021, 104(1): 524-534.
[68] [68] QIANG Y C, PAN Z F, YE X Y, et al. Ce3+ doped BaLu2Al4SiO12: A promising green-emitting phosphor for white LEDs[J]. J Lumin, 2018, 203: 609-615.
[69] [69] XIAO Y, XIAO W G, ZHANG L L, et al. A highly efficient and thermally stable green phosphor (Lu2SrAl4SiO12:Ce3+) for full-spectrum white LEDs[J]. J Mater Chem C, 2018, 6(45): 12159-12163.
[70] [70] QIANG Y C, LIU Y N, CHEN J Y, et al. BaY1.95Al2Ga2SiO12:0.05Ce3+: A novel green-emitting phosphor with extra-high quantum yield, small thermal quenching and excellent water resistance for high-color-rendering white LEDs[J]. J Lumin, 2020, 224: 117293.
[71] [71] ZHOU Y N, ZHUANG W D, HU Y S, et al. Cyan-green phosphor (Lu2M)(Al4Si)O12:Ce3+ for high-quality LED lamp: Tunable photoluminescence properties and enhanced thermal stability[J]. Inorg Chem, 2019, 58(2): 1492-1500.
[72] [72] JIANG L P, ZHANG X Y, TANG H, et al. A Mg2+-Ge4+ substituting strategy for optimizing color rendering index and luminescence of YAG:Ce3+ phosphors for white LEDs[J]. Mater Res Bull, 2018, 98: 180-186.
[73] [73] MENG Q H, ZHU Q, LI X D, et al. New Mg2+/Ge4+-stabilized Gd3MgxGexAl5-2xO12:Ce garnet phosphor with orange-yellow emission for warm-white LEDs (x=2.0-2.5)[J]. Inorg Chem, 2021, 60(13): 9773-9784.
[74] [74] TIAN Y N, TANG Y R, YI X Z, et al. Optimization of Ce3+ concentration and Y4MgSi3O13 phase in Mg2+-Si4+ Co-doped Ce:YAG ceramic phosphors[J]. J Am Ceram Soc, 2020, 103(11): 6453-6460.
[75] [75] LIN Z B, LIN H, XU J, et al. A chromaticity-tunable garnet-based phosphor-in-glass color converter applicable in w-LED[J]. J Eur Ceram Soc, 2016, 36(7): 1723-1729.
[76] [76] DING X, ZHU G, GENG W Y, et al. Highly efficient cyan-emitting garnet Ca3Hf2SiAl2O12:xCe3+ phosphor for solid state white lighting[J]. CrystEngComm, 2015, 17(17): 3235-3242.
[77] [77] WANG B C, MI R Y, LIU Y G, et al. Identification of dual luminescence centers from a single site in a novel blue-pumped Ca3Sc2Ge3O12:Ce3+ phosphor[J]. Dalton Trans, 2019, 48(31): 11791-11802.
[78] [78] PAN Z F, XU Y, HU Q S, et al. Combination cation substitution tuning of yellow-orange emitting phosphor Mg2Y2Al2Si2O12:Ce3+[J]. RSC Adv, 2015, 5(13): 9489-9496.
[79] [79] HEN Y B, TANG Z B, XU X S, et al. Tunable photoluminescence in Lu3Al5O12-Lu2CaMg2Si3O12 solid solution phosphors manipulated by synchronous ions co-substitution[J]. RSC Adv, 2016, 6(50): 43916-43923.
[80] [80] ZHOU Y N, ZHUANG W D, HU Y S, et al. A broad-band orange-yellow-emitting Lu2Mg2Al2Si2O12:Ce3+ phosphor for application in warm white light-emitting diodes[J]. RSC Adv, 2017, 7(74): 46713-46720.
[81] [81] LIN H, WANG B, HUANG Q M, et al. Lu2CaMg2(Si1?xGex)3O12:Ce3+ solid-solution phosphors: Bandgap engineering for blue-light activated afterglow applicable to AC-LED[J]. J Mater Chem C, 2016, 4(43): 10329-10338.
[82] [82] SETLUR A A, HEWARD W J, GAO Y, et al. Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting[J]. Chem Mater, 2006, 18(14): 3314-3322.
Get Citation
Copy Citation Text
TIAN Yanna, FAN Jintai, JIANG Benxue, CHEN Jie, ZHOU Shengming. Development on Spectral Regulation of Ce3+-Doped Garnet-Based Fluorescent Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 1128
Category:
Received: Aug. 31, 2023
Accepted: --
Published Online: Aug. 5, 2024
The Author Email: Shengming ZHOU (smzhou@siom.ac.cn)
CSTR:32186.14.